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Preface

The First International Conference on Provable Security 2007 (ProvSec 2007)
was held in Wollongong, Australia, November 1–2, 2007. The conference was
sponsored by iCORE Information Security Laboratory and RNSA (Research
Network for a Secure Australia). We are grateful to these organizations for their
support of the conference.

The conference proceedings, representing both full papers and short papers,
were published in time for the conference in this volume of Lecture Notes in
Computer Science series by Springer. This year the program committee invited
an international keynote speaker: Colin Boyd from Queensland University of
Technology, Australia. Prof. Boyd’s talk addressed the topic of “On One-Pass
Key Establishment”.

The Program Committee received 51 submissions. Ten submissions were se-
lected for full paper presentation and seven were selected for short paper pre-
sentation. The reviewing process was run using the iChair software, written by
Thomas Baignères and Matthieu Finiasz (EPFL, Switzerland). It took seven
weeks; each paper was carefully evaluated by at least three members of the Pro-
gram Committee. We appreciate the hard work of the members of the Program
Committee and the external referees, who gave many hours of their valuable
time.

We would like to thank all the people involved in organizing this conference.
In particular we would like to thank the General Chair Yi Mu, the Organizing
Committee Man Ho Au and Xinyi Huang and the Webmaster, Lan Zhou, for
their time and efforts.

Finally, we would like to thank all authors for submitting interesting new
research papers to ProvSec, providing us with an embarrassment of riches out of
which we could only accept a total of 17 contributed papers, even though many
more would have been worth publishing.

November 2007 Willy Susilo
Joseph K. Liu
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Stronger Security of Authenticated Key

Exchange
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klauter@microsoft.com
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Abstract. Recent work by Krawczyk [12] and Menezes [16] has high-
lighted the importance of understanding well the guarantees and limita-
tions of formal security models when using them to prove the security
of protocols. In this paper we focus on security models for authenti-
cated key exchange (AKE) protocols. We observe that there are several
classes of attacks on AKE protocols that lie outside the scope of the
Canetti-Krawczyk model. Some of these additional attacks have already
been considered by Krawczyk [12]. In an attempt to bring these attacks
within the scope of the security model we extend the Canetti-Krawczyk
model for AKE security by providing significantly greater powers to the
adversary. Our contribution is a more compact, integrated, and compre-
hensive formulation of the security model. We then introduce a new AKE
protocol called NAXOS and prove that it is secure against these stronger
adversaries.

1 Introduction

In this paper we extend the Canetti-Krawczyk [11,12] security model for au-
thenticated key exchange (AKE) to capture attacks resulting from leakage of
ephemeral and long-term secret keys. Our security model for authenticated key
exchange is defined in the spirit of Bellare and Rogaway [3] and Canetti and
Krawczyk [11] by an experiment in which the adversary is given many corrup-
tion powers for various key exchange sessions and must solve a challenge on a
test session. We extend adversarial capabilities to the following extent: the only
corruption powers we do not give an adversary in the experiment are those that
would trivially break an AKE protocol. We also define a new AKE protocol
which is secure in our new model.

More specifically, in an authenticated key exchange protocol, two parties ex-
change information and compute a secret key as a function of at least four pieces
of secret information: their own long-term (static) and ephemeral secret keys
and the other party’s long-term and ephemeral secret keys. Of the four pieces of

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 B. LaMacchia, K. Lauter, and A. Mityagin

information, we allow an adversary to reveal1 any subset of the four which does
not contain both the long-term and ephemeral secrets of one of the parties. To ex-
plain this more precisely, we divide AKE test sessions (sessions which are subject
to attack by an adversary) into two types. In sessions of the first type (“passive”
sessions), the adversary does not cancel or modify communications between the
two parties. In sessions of the second type (“active” sessions), the adversary
may forge the communication of the second party. Another way to phrase the
distinction, as done by Krawczyk in the analysis of the HMQV protocol [12],
is whether the adversary actively intervenes in the key exchange session or is a
passive eavesdropper.

In addition to distinguishing between passive and active sessions, we identify
which pieces of secret information the adversary can reveal without being able
to trivially break the AKE protocol (compute the session key for any AKE
protocol). In both types of sessions, if an adversary can reveal the long-term and
the ephemeral secret keys of one of the parties in the session, then the adversary
can trivially compute a session key as it has all the secret information of one of
the legitimate parties in the session.

For passive sessions, an adversary may reveal both ephemeral secret keys,
both long-term secret keys, or one of each from the two different parties without
trivially breaking the protocol. Thus security in our model implies weak Per-
fect Forward Secrecy, defined by Krawczyk to be security against revelation of
long-term secret keys after the session is completed (without active adversarial
intervention in the session establishment).

For active sessions, the adversary may forge communications from one of the
parties. Thus, if the adversary can also reveal the long-term secret key of that
same party, then the adversary can trivially compute the session key. The same
argument was used by Krawczyk to show that no 2-round AKE protocol can
achieve full perfect forward secrecy (PFS). Still, an adversary can reveal a long-
term secret key or ephemeral secret key of the other party without trivially
breaking the session. So for another example, our extension to the Canetti-
Krawczyk model also implies security against Key Compromise Impersonation
(KCI) attacks, where the adversary first reveals a long-term secret of a party
and then impersonates others to this party.

Considering attacks involving both types of sessions, it is natural to define a
single security model which captures all of them. In our model, in passive test
sessions we allow the adversary to reveal any subset of the four pieces of secret
information which does not contain both the long-term and ephemeral secrets of
one of the parties. In active test sessions, we allow the adversary to reveal only
the long-term secret or the ephemeral secret key of the party which is executing
the test session. In our security experiment, a test session is still considered clean
even if the adversary has revealed any of the allowable combinations of secret
keys of the two parties.

1 We say that an adversary “reveals” a piece of secret information when that adversary
chooses to learn the value of that information by performing the corresponding key
reveal query as defined in Section 3.2.
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Security in this extended Canetti-Krawczyk model also implies security
against a number of other attacks not covered by the Canetti-Krawczyk model
(see Section 2.2). In a sense, our model is just an extension of an instance of
the Canetti-Krawczyk model, since we define the session state of a party to be
the ephemeral secret key. On the other hand, some instance of the Canetti-
Krawczyk model must be chosen when considering the security of any pro-
tocol, since the definition of the session-state reveal query must be specified,
and our model is stronger than a model which does not include the ephemeral
secret key as part of the session state for the session state reveal query. In
addition, the Canetti-Krawczyk model does not allow the adversary to attack
sessions against which a session state reveal query has been made. They con-
sider such sessions broken, while our definition covers the security of these par-
tially corrupted sessions. Krawczyk does extend the model in [12], but still some
attacks are not covered because those sessions are not considered clean. Our
model extends the notion of a clean session further, giving the adversary more
power to reveal long-term and ephemeral secret keys. Our motivation to in-
clude revelations of ephemeral secret keys in the model comes from “practical”
(i.e. engineering) considerations and scenarios such as active adversarial attacks
or compromise of the random number generator (RNG) used by one of the
parties.

We stress that our extension of the security model allows the adversary to
register arbitrary public keys for adversary-controlled parties without any checks
such as proof-of-possession done by the certificate authority. In contrast, some
of the protocols in the literature [13,14] were proved secure assuming that the
key registration is done honestly. Namely, that initially a trusted party generates
keys for all, even adversary-controlled parties.

Finally, we present a new AKE protocol, called NAXOS, which provably meets
our definition of AKE security. We prove the security of NAXOS under the
standard Gap Diffie-Hellman assumption. We also improve the concrete security
of NAXOS under the related Pairing Diffie-Hellman assumption. A version of
the NAXOS protocol with key confirmation is also possible.

In Figure 1 we compare the efficiency and security of NAXOS with four other
recent authenticated key exchange protocols: HMQV, KEA+ [15], protocol T S3
by Jeong, Katz and Lee [13] and Kudla-Paterson [14]2. The second column in the
table, “Efficiency,” lists the relative efficiency of the protocol as measured by the
number of exponentiations executed by one party. (Communication costs in all of
these protocols, except for Jeong-Katz-Lee, is the same as in the original Diffie-
Hellman protocol.) Column 3, “Key Registration,” specifies whether adversary-
controlled parties can register arbitrary public keys or if honest key-registration is
assumed. The fourth column, labeled “Ephemeral,” indicates whether an adver-
sary is allowed to reveal ephemeral secret information of the parties. Column 5 lists

2 Kudla and Paterson [14] define partnership via matching session identifiers (computed
by the parties), although for their protocol this appears to be equivalent to matching
conversations.
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Protocol Effic. Key Reg. Ephemeral Security Assumptions

NAXOS 4 Arbitrary yes Extended CK GDH (or PDH) + RO
HMQV 2.5 Arbitrary yes CK + wPFS + KCI GDH + KEA1 + RO
KEA+ 3 Arbitrary yes CK + wPFS + KCI GDH (or PDH) + RO

Jeong-Katz-Lee 3 Honest no BR + wPFS DDH + secure MACs
Kudla-Paterson 3 Honest no BR + KCI GDH + RO

Fig. 1. Comparison of recent AKE protocols

the security model for each protocol3. Finally, the sixth column (“Assumptions”)
lists the security assumptions upon which each protocol depends4. We refer the
reader to Chapter 7 of [6] for a good overview of Diffie-Hellman assumptions.

We begin with a brief review in Section 2 of the Canetti-Krawczyk security
model and discuss some attacks not covered by their definition in Section 2.2. We
introduce our extension of the Canetti-Krawczyk security model in Section 3. In
Section 4 we describe the NAXOS protocol and prove its security in the extended
model.

2 Previous Models

2.1 Overview of the Canetti-Krawczyk Model

The Canetti-Krawczyk security model is among a family of security models for
authenticated key exchange that includes those of Bellare and Rogaway [3,5]
and Bellare, Pointcheval and Rogaway [2]. We refer the reader to Choo et al.
[9] for a concise summary of the differences among these various models. We
give a high-level overview of the Canetti-Krawczyk model and introduce some
notation which will be useful later in the paper. We remark that the model
we describe differs from the original definition in that we use session identifiers
defined via matching conversations. The same definition was used by Krawczyk
when analyzing the security of the HMQV protocol [12] and it is now a commonly
used variant of the Canetti-Krawczyk model.

The AKE security experiment involves multiple honest parties and an adver-
sary M connected via an unauthenticated network. The adversary selects parties
to execute key-exchange sessions and selects an order in which the sessions will
be executed. Actions the adversary is allowed to perform include taking full

3 CK denotes Canetti-Krawczyk security without perfect forward secrecy, assuming
that partnership is defined via matching conversations. BR denotes the Bellare-
Rogaway model [3], which appears to be equivalent to the Canetti-Krawczyk model
with no ephemeral reveals allowed and key-registration done honestly [9]. KCI denotes
security against key-compromise impersonation. wPFS denotes weak perfect forward
secrecy. Extended CK denotes our extension of the Canetti-Krawczyk model.

4 RO – random oracle model [4], DDH – Decisional Diffie-Hellman, GDH – Gap Diffie-
Hellman [17], PDH – Pairing Diffie-Hellman [15] and KEA1 – knowledge of exponent
assumption [1].
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control of any party (a Corrupt query), revealing the session key of any session
(a Reveal query), or revealing session-specific secret information of any session
(a Session-State Reveal query).

We stress that an AKE session is executed by a single party: since all commu-
nication is controlled by an adversary, a party executing a session cannot know
for sure with whom it is communicating. The party executing the session is called
the owner of the session and the other party is called the peer. The matching
session to an AKE session (by the owner with the peer) is the corresponding
AKE session which is supposed to be executed by the peer with the owner.
The matching session might not exist if the communications were modified by
the adversary. The session identifier of an AKE session consists of the parties’
identities concatenated with messages they exchanged in the session5. In [12], a
completed session is definied to be “clean” if the session as well as its matching
session (if it exists) is not corrupted (neither session key nor session state were
revealed by M) and if none of the participating parties were corrupted.

At some point in the experiment, the adversary is allowed to make one Test
query: it can select any clean completed session (called the test session) and it
is given a challenge which consists either of the session key for that session or a
randomly selected string. The adversary’s goal is to guess correctly which of the
cases was selected.

Additionally, the Canetti-Krawczyk [11] definition has an optional perfect for-
ward secrecy (PFS) requirement. In the variant of Canetti-Krawczyk security with
PFS, the adversary is allowed to corrupt a participant of the test session (either
owner or peer) after the test session is completed. As noted by Krawczyk [12],
the PFS requirement is not relevant for 2-round AKE protocols since no 2-round
protocol can achieve PFS. Krawczyk introduced the notion of weak perfect forward
secrecy (wPFS) which can be achieved by 2-round protocols and which he demon-
strated is achieved by HMQV [12]. Weak PFS guarantees perfect forward secrecy
only for those AKE sessions where the adversary didn’t modify communications
between the parties. (Using the above terminology, the matching session exists for
the test session and both test and matching sessions are clean.)

2.2 Attacks Not Covered by the Existing Definitions

We point out several attacks which are not captured by the previous defini-
tions and explain which components of the Canetti-Krawczyk model prohibit
these attacks from being considered. First, we observe that although the adver-
sary is allowed to reveal the session state of the parties, he is not allowed to
make Session-State Reveal queries against the session he wants to attack (the
test session). That is, existing security models do not provide any security guar-
antees for a session if the ephemeral secret key of either party has been leaked.
While Krawczyk ([12]) extends the Canetti-Krawczyk model by making a defini-
tion of clean session that allows him to consider resistance to Key Compromise
5 We remark that for protocols, where participants do not have full view of the mes-

sages exchanged (for example, see [10]), it might not be possible to define such session
identifiers.
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Impersonation (KCI) attacks and achieve weak Perfect Forward Secrecy (wPFS),
this extension still does not include attacks such as revelation of both ephemeral
secret keys or both long-term secret keys. Krawczyk does consider resistance to
revelation of both ephemeral secret keys separately, and proves HMQV secure
against this attack under the stronger assumptions of GDH and KEA1.

Second, when the adversary corrupts an honest party, he takes full control over
this party and reveals all its secret information. This definition of the Corrupt
query does not allow attacks where the adversary reveals a long-term secret key
of some party prior to the time when that party executes the test session. Here
we summarize some attacks which are not allowed by the Canetti-Krawczyk
model but are permitted under our new definition:

– Key-compromise impersonation (KCI) attack [7,12]: the adversary reveals a
long-term secret key of a party and then impersonates others to this party.

– An adversary reveals the ephemeral secret key of a party and impersonates
others to this party.

– Two honest parties execute matching sessions, and the adversary reveals the
ephemeral secret keys of both of the parties and tries to learn the session
key.

– Two honest parties execute matching sessions. The adversary reveals the
ephemeral secret key of one party, the long-term secret key of the other
party and tries to learn the session key

– Two honest parties execute matching sessions. The adversary reveals the
long-term keys of both of the parties prior to the execution of the session
and tries to learn the session key.

3 Definitions

3.1 Motivation for Our Security Definition

We modify the Canetti-Krawczyk model in the definition of adversarial power
and in the notion of cleanness of the test session. Specifically, we replace the
Session-State Reveal query with an “Ephemeral Key Reveal” query which reveals
the ephemeral secret key of the party. Additionally, we give the adversary the
power to reveal a long-term secret key, by making a Long-Term Key Reveal query,
without corrupting the party. We remove the Corrupt query as it is no longer
necessary: the adversary can achieve the same result as the Corrupt query by
revealing all the secret information of the party through Long-Term Key Reveal,
Ephemeral Key Reveal and Reveal queries and by computing everything on behalf
of that party. We also modify the definition of a “clean session” by allowing the
adversary to reveal the maximum possible amount of data. We disallow only
those corruptions which allow the adversary to trivially break any AKE protocol.

We classify the test sessions as either “passive” or “active” depending on
whether the adversary is able to cancel or modify the information sent between
two honest participants. Formally, passive sessions are those where the matching
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session was completed at some point in the experiment, and active sessions are
those where no matching session was completed at any time in the experiment.

For passive sessions we allow the adversary to reveal any subset of the four
secret keys (each party’s ephemeral and long-term secret keys) which does not
contain both the ephemeral and long-term secret keys of a single party. Note that
the knowledge of both the ephemeral and long-term keys of one of the parties
allows the adversary to compute the session key for any AKE protocol.

For active sessions the communication sent by the peer might be corrupted
and thus we cannot define the ephemeral key of the peer. In this case we only
allow the adversary to reveal either the ephemeral or the long-term secret key of
the owner, as revealing both keys would trivially compromise the protocol. Note
that we cannot allow the adversary to reveal the long-term secret of the peer
(even after the test session is completed), since Krawczyk [12] shows that in this
case one can break any AKE protocol. (This is the same attack which shows the
impossibility of the full perfect forward secrecy requirement.)

3.2 Security Experiment for Extended Canetti-Krawczyk

Assume that the identities of the parties are binary strings (they can be derived
from the actual names of the parties). We will use letters A, B, C, . . . , both for
referring to the parties and for their identities. The adversary is given the power
to select each party’s identity (the binary string) if it so chooses.

There are a number of honest parties which are connected to the certificate
authority, CA, and to the adversary, M. That is, the communication between the
parties is fully controlled by M (and M cannot interfere with communication
between a single party and the CA). M is also connected to the certificate
authority and can register fictitious parties. The adversary plays a central role
in the experiment and is responsible for activating all other parties.

We call a particular instantiation of an AKE protocol executed by one of the
parties an AKE session. Since all communication is controlled by the adversary, a
party can never know if the second party actually exists and if the communication
it receives was computed by an honest party or by the adversary. Legitimate
execution of an AKE protocol by two parties A and B consists of two AKE
sessions, matching sessions executed by A and by B respectively. Note that an
instantiation of the AKE protocol is different depending on whether the executor
is the owner or the peer.

We do not assume the existence of explicit session identifiers. Instead, we
define a session identifier to consist of the identities of the 2 participants and
the information they exchanged. Specifically, a session identifier

sid = (role, ID, ID∗, comm1, . . . , commn),

where ID ∈ {0, 1}∗ is the identity of the party executing the session, role ∈
{O, P} is its role (owner/peer) in the protocol, ID∗ is the identity of the other
party and commi ∈ {0, 1}∗ is the i-th communication sent by the parties. As in
the Canetti-Krawczyk model, we define the matching session to an AKE session
to be the session executed by the other party with the same communications
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being transmitted, albeit in different order. For example, in a 2-round protocol,
if A executes the session (O, A, B, commA, commB), then the matching session
is executed by B and has session identifier (P, B, A, commA, commB).

A party computes a communication commi as a function of its own ephemeral
and long-term secret keys, its partner’s public key and previous messages ex-
changed. Once a party receives all the communications, it computes a session
key as a function of its own ephemeral and long-term secret keys, its partner’s
public key, and all communications, and completes the session.

The experiment proceeds as follows. Initially M selects the identities of all
honest parties (which can be arbitrary distinct binary strings) and honest parties
generate and register their public keys with the CA. The adversary can register
arbitrary public keys (even the same as those of some honest parties) on behalf
of adversary-controlled parties. Then the adversary makes any sequence of the
following queries:

– Send(A, B, comm). Sends a message comm to A on behalf of B. Returns A’s
response to this message. This query allows M to order A to start an AKE
session with B and to provide communications from B to A.

– Long-Term Key Reveal(A). Reveals a long-term key of a party A.
– Ephemeral Key Reveal(sid). Reveals an ephemeral key of a session sid (pos-

sibly incomplete).
– Reveal(sid). Reveals a session key of a completed session sid.

Eventually (at any time in the experiment), M selects a completed session
sid, makes a query Test(sid) and is given a challenge value C. M continues the
experiment after the Test query. The experiment terminates as soon as M makes
the Guess(b′) query. The experiment answers the adversary’s queries as follows:

– Test(sid) // can be made only once.
Pick b

$← {0, 1}. If b = 1, let C ← Reveal(sid); otherwise pick C
$← {0, 1}λ.

Return C.
– Guess(b′) // M terminates after making this query.

If b′ = b, return 1, otherwise return 0.

An adversary M wins the experiment if the selected test session is clean and
if he guesses the challenge correctly (that is, if the Guess query returns 1).

We now define what it means for a test session to be clean. Let sid be an
AKE session completed by a party A with some other party B, and denote by
sid∗ the matching session to sid, supposedly executed by B (sid∗ may not exist
in the experiment). Denote by skA and skB long-term secret keys of A and B.
Denote by eskA and eskB ephemeral secret keys generated by A and B in sid
and sid∗ (the latter is defined only if sid∗ exists). We say that an AKE session
sid is not clean if an adversary can trivially compute the session key. That is, a
session sid is not clean if any of the following conditions hold:

– A or B is an adversary-controlled party. This means in particular that M
chooses or reveals both the long-term and ephemeral secret keys for the party
and performs all communications and computations on behalf of the party.
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– M reveals the session key of sid or sid∗ (if the latter exists).
– Session sid∗ exists and M reveals either both skA and eskA, or both skB

and eskB.
– Session sid∗ doesn’t exist and M reveals either skB or both skA and eskA.

A session sid is clean if none of these conditions hold. We remark that the clean-
ness of the test session can be identified only after the experiment is completed:
the third and fourth conditions above can only be determined in the end of the
experiment. That is, the adversary wins the experiment if he correctly guesses
the challenge for the test session and this session remains clean until the end of
the experiment.

Definition 1 (Extended Canetti-Krawczyk security). The advantage of
the adversary M in the AKE experiment with AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

We say that an AKE protocol is secure (in the extended Canetti-Krawczyk model)
if matching sessions compute the same session keys and no efficient adversary
M has more than a negligible advantage in winning the above experiment.

4 NAXOS AKE Protocol

4.1 Assumptions

All the arithmetic in this section is assumed to be in a mathematical group G
of known prime order q. We denote by g a generator of G and write the group
operation multiplicatively.

The discrete logarithm function DLOG(·) in G takes input an element a ∈ G
and returns x ∈ Zq such that a = gx. The computational Diffie-Hellman (CDH)
function CDH(·, ·) takes as input a tuple of elements (a, b) ∈ G2 and returns
gDLOG(a)·DLOG(b). The Decisional Diffie-Hellman (DDH) function DDH(·, ·, ·)
takes as input a triple of elements (a, b, c) ∈ G3 and returns 1 if c = CDH(a, b)
and 0 otherwise.

The advantage of an algorithm M in solving the Discrete Logarithm prob-
lem, AdvDLOG(M), is the probability that, given a

$← G, M correctly returns
DLOG(a). Similarly, the advantage of an algorithm M in solving the Gap Diffie-
Hellman (GDH) problem, AdvGDH(M), is the probability that, given as input
(a, b) $← G2 and oracle access to DDH(·, ·, ·), M correctly outputs CDH(a, b).
We say that G satisfies the GDH assumption if no feasible adversary can solve
the GDH problem with non-negligible probability. The GDH assumption was in-
troduced by Okamoto and Pointcheval [17] and is now a standard cryptographic
assumption used to establish the security of many protocols.

Let G′ be another group of order q. A function e : G × G → G′ is a bilinear
pairing if it is non-degenerate and if for any pair ga, gb ∈ G, e(ga, gb) = e(g, g)ab.
The Pairing Diffie-Hellman (PDH) problem recently introduced by Mityagin and
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Lauter [15] is to solve the CDH problem when given access to the pairing oracle e.
The advantage AdvPDH(M) of an algorithm M in solving the PDH problem
is the probability that M, given (a, b) $← G2 and a pairing oracle e, computes
CDH(a, b). We say that G satisfies the PDH assumption if no feasible adversary
solves the PDH problem with non-negligible probability. In groups which have
a bilinear pairing, the PDH problem is equivalent to the original CDH problem,
although one can also consider the PDH problem in groups where no efficient
pairing operation is known. We find the Pairing Diffie-Hellman assumption to
be as justified as the GDH assumption since the only known way to compute
DDH in groups where CDH is hard is via a pairing function.

4.2 Protocol Description

The NAXOS AKE protocol uses a mathematical group G and two hash functions,
H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}λ (for some constant λ). A long-term
secret key of a party A is an exponent skA ∈ Zq, and the corresponding long-term
public key of A is the power pkA = gskA ∈ G. In the following description of an
AKE session of NAXOS executed between the parties A and B we assume that
each party knows the other’s public key and that public keys are in the group
G. Additionally, we use the syntax H(x1, x2, ...) to represent the application of
the hash function H to the concatenation of its arguments x1||x2||....

The session execution proceeds as follows. The parties pick ephemeral secret
keys eskA and eskB at random from {0, 1}λ. Then the parties exchange values
gH1(eskA,skA) and gH1(eskB,skB), check if received values are in the group G and
only compute the session keys if the check succeeds. The session key K ∈ {0, 1}λ

is computed as

H2(gH1(eskB,skB)skA , gH1(eskA,skA)skB , gH1(eskA,skA)H1(eskB,skB), A, B).

The last two components in the hash are the identities of A and B, which we
assume to be binary strings. Figure 2 depicts the protocol.

Theorem 1. NAXOS satisfies Extended Canetti-Krawczyk security if H1 and
H2 are modeled by independent random oracles.

A B

eskA
$← {0, 1}λ X = gH1(eskA,skA)

�

Y = gH1(eskB,skB)
�

eskB
$← {0, 1}λ

A : K ← H2(Y
skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA), A, B)

B : K ← H2(pk
H1(eskB,skB)
A , XskB , XH1(eskB,skB), A, B)

Fig. 2. NAXOS AKE Protocol
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For any AKE adversary M against NAXOS that runs in time at most t,
involves at most n honest parties and activates at most k sessions, we show that
there exists a GDH solver S, a PDH solver R and a DLOG solver T such that

AdvGDH(S) = AdvPDH(R)

≥ 1
2

(
min

{
2
k2 ,

1
nk

}
· AdvAKE

NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

))
,

where S runs in time O(tk), R runs in time O(t log t) and T runs in time O(t).

The proof of Theorem 1 is given in Appendix A.
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A Security Proof for NAXOS

Let A be any AKE adversary against NAXOS. We start by observing that since
the session key of the test session is computed as K = H2(σ) for some 5-tuple
σ, the adversary M has only two ways to distinguish K from a random string:

1. Forging attack. At some point M queries H2 on the same 5-tuple σ.
2. Key-replication attack. M succeeds in forcing the establishment of another

session that has the same session key as the test session.

A similar argument was used in the security proofs of the HMQV [12] and
KEA+ [15] AKE protocols. If random oracles produce no collisions, the key-
replication attack is impossible as equality of session keys implies equality of
the corresponding 5-tuples (which are hashed to produce session keys). In turn,
distinct AKE sessions must have distinct 5-tuples. Therefore, if random oracles
produce no collisions (collisions happen with probability O(k2/2λ)), M must
perform a forging attack. Next we show that if M can mount a successful forging
attack, then we can construct a Gap Diffie-Hellman solver S which uses M as a
subroutine. Most of the remaining proof is devoted to the construction of S.

S takes as input a GDH challenge (X0, Y0). Then S executes the Extended
Canetti-Krawczyk (ECK) experiment with M the adversary against the NAXOS
protocol, and modifies the data returned by the honest parties in such a way
that if M breaks security of NAXOS, then S can reveal the solution to the GDH
problem from M.

We distinguish between two cases of M’s behavior: whether M selects a test
session for which the matching session exists or if the test session has no matching
session. We handle analysis of these cases differently and note that at least one
of them happens with probability ≥ 1/2.
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A.1 Matching Session Exists

Assume that M selects a test session for which the matching session exists. Then
S modifies the experiment as follows. S selects at random matching sessions
executed by some honest parties A and B (in fact, S selects two sessions at
random and continues only if they are matching – S successfully guesses them
with probability 2/k2). Denote by commA and commB the communications sent
by the respective parties in these matching sessions. When either of these sessions
is activated, S does not follow the protocol. Instead, S generates eskA and eskB
normally but sets commA ← X0 (in place of gH1(skA,eskA)) and commB ← Y0
(in place of gH1(skB,eskB)).

With probability 1/k2 M picks one of the selected sessions as the test session
and another as its matching session. We claim that if M wins in the forging
attack, S can solve the CDH challenge. Indeed, the supposed session key for the
selected session is H2(σ), where the 5-tuple σ includes the value CDH(X0, Y0).
To win, M must have queried σ to the random oracle H2.

If the selected session is indeed the test session, M is allowed to reveal a
subset of { skA, skB, eskA and eskB }, but it is not allowed to reveal both
(skA, eskA) or both (skB, eskB). We observe that in this case, the only way that
M can distinguish this simulated ECK experiment from a true ECK experiment
is if M queries (skA, eskA) or (skB, eskB) to H1 (this way, M will find out that
commA and commB were not computed correctly). Proposition 1 shows that the
probability that M makes such queries is at most

2n · AdvDLOG(T )

for some discrete logarithm solver T .
Therefore (assuming that M always selects a test session which has a matching

session)

AdvGDH(S) ≥ 2
k2 · AdvAKE

NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

)
.

Note that in this case S doesn’t make any queries to the DDH oracle and runs
in time O(t).

A.2 No Matching Session

Now assume that M selects a test session for which no matching session exists.
In this case S modifies the experiment as follows. S selects a random party B and
sets pkB ← X0. Note that S doesn’t know the secret key corresponding to this
public key and thus it cannot properly simulate ECK sessions executed by B. S
handles ECK sessions executed by B as follows (assume that B is the owner).
S randomly selects eskB, picks h at random from Zq and sets commB = gh

instead of gH1(eskB,DLOG(X0)). S sets a session key K (which is supposed to be
H2(CDH(X0, commC), pkh

C , commh
C , B, C)) to be a random value. Note that S

can handle session key and ephemeral secret key reveals by revealing K and
eskB, but cannot handle long-term secret key reveals.
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If C is an adversary-controlled party, M can compute the session key on its
own, reveal K and detect that it is fake. To address this issue, S watches M’s
random oracle queries and if M ever queries (Z, pkh

C , commh
C , B, C) to H2 (for

some Z ∈ G), S checks if DDH(X0, commC , Z) = 1 and if yes, replies with the
key K. Similarly, on the computation of K, S checks if K should be equal to
any previous response from the random oracle. Because of these checks S runs
in quadratic time of the number of random oracle’s queries.

M cannot detect that it is in the simulated ECK experiment unless it either
queries (eskB, DLOG(X0)) to H1 or reveals a long-term secret key of B. The
first event reveals DLOG(X0) and allows S to solve the CDH problem – by
Proposition 1 it happens with probability at most

n · AdvDLOG(T )

for some discrete logarithm solver T . The second event is impossible as otherwise
the test session will no longer be clean.

S also randomly selects an ECK session in which B is the peer. Denote the
owner of this session by A. When the selected session is activated, S follows the
protocol only partially: S generates eskA normally but sets commA ← Y0 (in
place of gH1(skA,eskA)).

With probability at least 1/nk (1/n to pick the correct party B and 1/k to
pick the correct session), M picks the selected session as the test session, and
if it wins, it solves the CDH problem. The supposed session key for the selected
session is H2(σ), where the 5-tuple σ includes the value CDH(X0, Y0). To win,
M must have queried σ to the random oracle H2.

If the selected session is indeed the test session, M is not allowed to reveal both
skA and eskA and is not allowed to corrupt B. In this case, the only way that
M can distinguish this simulated ECK experiment from a true ECK experiment
is if M queries (skA, eskA) to H1. However, by Proposition 1 it happens with
probability at most

n · AdvDLOG(T )

for some discrete logarithm solver T .
Overall, if M always selects a test session which doesn’t have a matching

session then the success probability of S is at most

AdvGDH(S) ≥ 1
nk

· AdvAKE
NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

)
,

where T is some discrete logarithm solver. S runs in time O(kt).

A.3 Efficiency Analysis

We observe that the running time of S is O(kt). For each session key compu-
tation done by B (where Y is the incoming communication in that session) the
solver S has to go over all previous H2 queries and for each H2 query of the
form (. . . , Z, . . . ) check if DDH(X0, Y, Z) = 1. Similarly, on each DDH query
of the form (. . . , Z, . . . ), S has to go over all previous session key computations
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done by B and for each such computation S checks if DDH(X0, Y, Z) (where Y
the incoming communication in that session). Since M can activate at most k
sessions and make at most t H2 queries, the total running time is O(tk).

The running time of the solver can be improved if the solver has access to
the pairing oracle instead of to the DDH oracle. We construct the PDH solver
R in the same way as S with the only difference being that R must also han-
dle the checks discussed above. Note that DDH(X0, Y, Z) = 1 if and only if
e(Z, g) = e(X0, Y ). Therefore R can store corresponding values e(Z, g) in a
balanced binary tree and on each session executed by B check for X0, Y by
computing e(X0, Y ) and searching for this value in the binary tree (which can
be done in log t steps). Therefore, R has the same advantage as S and runs in
time O(t log t).

A.4 Reduction to the Discrete Logarithm Problem

Finally, we are left to prove the proposition which reduces breaking secret keys
of honest parties to solving the Discrete Logarithm problem.

Consider any adversary M against the NAXOS protocol. M can obtain long-
term secret keys of some honest parties via Long-Term Key Reveal queries and
can attempt to break long-term keys of uncorrupted parties. We claim that he
cannot do so unless he solves the discrete logarithm problem. Let “M breaks a
secret key” denote an event that M makes a random oracle query H1(∗, skA) for
some honest party A against which M didn’t make the Long-Term Key Reveal
query.

Proposition 1. For any adversary M against the NAXOS protocol who runs
in time t and involves at most n honest parties, there exists a discrete logarithm
solver T such that

Prob[“M breaks a secret key”] < nAdvDLOG(T ),

where T runs in time O(t).

Proof. Since the security experiment involves at most n honest parties, we can
assume that M queries (∗, skA) to H1 for a certain party A with probability at
least

1
n

Prob[“M breaks a secret key”].

The discrete logarithm solver T is given a challenge X ; T runs the AKE exper-
iment with M and sets the public key of a party A to be X .

T can perfectly simulate all actions of the parties except for computing
H1(eskA, skA) during key-exchange sessions involving A (here skA is supposed
to be DLOG(X)). In these cases T randomly selects distinct random oracle
values for distinct values of eskA.

The only way that M can distinguish this simulation from the true experiment
is by querying (eskA, DLOG(X)) to the random oracle. However in this case (as
we see below) T automatically wins the DLOG experiment.
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Whenever M makes a query of the form (y, z) to the random oracle H1,
T verifies whether X = gz and if true, submits z as an answer to the DLOG
experiment. Note that in the simulated experiment M makes a random oracle
query (∗, skA = DLOG(X)) with probability at least

1
n

Prob[“M breaks a secret key”].

Therefore, T succeeds in solving discrete logarithm of X at least with this
probability.
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Abstract. We study the multicast stream authentication problem when an oppo-
nent can drop, reorder and inject data packets into the communication channel. In
this context, bandwidth limitation and fast authentication are the core concerns.
Therefore any authentication scheme is to reduce as much as possible the packet
overhead and the time spent at the receiver to check the authenticity of collected
elements. Recently, Tartary and Wang developed a provably secure protocol with
small packet overhead and a reduced number of signature verifications to be per-
formed at the receiver.

In this paper, we propose an hybrid scheme based on Tartary and Wang’s ap-
proach and Merkle hash trees. Our construction will exhibit a smaller overhead
and a much faster processing at the receiver making it even more suitable for mul-
ticast than the earlier approach. As Tartary and Wang’s protocol, our construction
is provably secure and allows the total recovery of the data stream despite era-
sures and injections occurred during transmission.

Keywords: Stream Authentication, Polynomial Reconstruction, Unsecured
Channel, Merkle Hash Tree, Erasure Code.

1 Introduction

With the expansion of communication networks, broadcasting has become a major tech-
nology to distribute digital content from a single user to a large audience via a public
communication channel such as the Internet for instance. Online games, military de-
fense systems, satellite television and financial quotes are a few examples of multicast
distribution of information. Nevertheless, in large-scale broadcasts, a lost piece of a
data stream1 could generate a flood of retransmission requests from the receivers that

1 In broadcasting, the sequence of information sent into the network is called stream.

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 17–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



18 C. Tartary, H. Wang, and J. Pieprzyk

congregate at the sender’s side. Furthermore the network can be under the influence of
malicious users performing illegal and damaging operations on the stream. As a conse-
quence, the security of a multicast authentication protocol relies on the network proper-
ties and the opponents’ computational power. Several unconditionally secure schemes
have been developed [5, 9, 36] but either these are one-time protocols or they require too
large storage capacities. In this work, we consider that adversaries have polynomially
bounded computational abilities.

An application like a pay-TV channel broadcasting programs 24 hours a day and
seven a week suggests that the stream can be considered as infinite. Nevertheless the
receivers must be able to authenticate data within a short period of time upon reception.
Since many protocols will distribute private or sensitive content, non-repudiation of the
sender is required for most of them as using data from an uncertain origin can have
disastrous consequences during military operations for instance. Unfortunately signing
each data packet2 is impractical as digital signatures are generally very expensive to
generate and/or verify. Furthermore bandwidth limitations prevent one-time and k-time
signatures [11, 35] from being used due to their large size. Boneh et al. constructed
short signatures in [6] but their verification time is prohibitive to be a practical solution
for authenticated broadcast [3, 37]. Thus a general approach is to generate a single
signature and to amortize its computational cost and overhead over several data packets
using a chain of hash functions for instance.

Several constructions relying on hash functions have been developed to deal with
packet loss [12, 21, 31, 32]. A signature is generated from time to time and is always
assumed to be received correctly. This provides authentication and non-repudiation of
the sender and allows new receivers to join the communication group at any block3

boundary. Using Markov chains [10, 30, 42] to model the network packet loss, the
authors of the previous constructions determined bounds on the packet authentication
probability. Unfortunately, the main issue in those schemes is the fact that they rely on
the reliable reception of signature packets. Since networks like the Internet only provide
a best effort delivery of data, the reliability requirement limits the area of applications
of those constructions.

In order to overcome this issue, a general solution is to split the signature into k parts
where only � of them (� < k) are enough to guarantee the recovery of the whole signa-
ture. Many schemes have been developed using this idea [1, 26, 27, 28, 29] but none of
them tolerates a single packet injection. Using a Merkle hash tree [20], Wong and Lam
developed a construction dealing with both erasures and injections [41]. Nevertheless,
it is vulnerable to denial of service attacks (DoS) against the computational resources
of the receiver as each packet carries the block signature. Thus, in the worst case, the
number of signature verifications to be performed per block of n packets is Θ(n). In
[15], Karlof et al. overcame this problem by using Merkle hash trees as one-way accu-
mulators [2, 4, 24, 25]. Their approach requires O(1) signature verifications per block
in any case and each augmented packet4 has to carry �log2 n� hashes which may be too

2 Since the data stream is large, it is divided into fixed-size chunks called packets.
3 In order to be processed, packets are gathered into fixed-size sets called blocks.
4 We call augmented packets the elements sent into the network. They generally consist of the

original data packets with some redundancy used to prove the authenticity of the element.
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large for resource limited receivers. In [17], Lysyanskaya et al. used a polynomial rep-
resentation as well as an algorithm by Guruwami and Sudan [14] to deal with packet
drops and data injections. As in Karlof et al.’s construction, their technique requires
O(1) signature verifications but its packet overhead is O(1) bits. Recently, Lysyankaya
et al.’s approach has been extended by Tartary and Wang [39]. This scheme uses Maxi-
mum Distance Separable (MDS) codes [18] and is denoted as TWMDS in our paper. It
requires O(1) signature verifications per block, O(1) bit packet overhead and enables
all data packets to be recovered at the receiver despite erasures and injections thanks
to the erasure correcting code. This feature is important when the application process-
ing the data packets is not loss tolerant as it may be the case for military applications
where obtaining all information about the enemy target is vital or for high quality video
streaming where this technique prevents frozen images to happen.

In this work, we present an hybrid construction based on Merkle hash trees and
TWMDS which will be provably secure in the random oracle model. This idea of using
a Merkle hash tree for multicast authentication is note new but this technique enables
fast authentication as only hash computations are performed. As in TWMDS, our new
scheme will enable the whole data packets to be recovered at the receiver despite era-
sures and injections and will allow new members to join the communication group at
any block boundary. As noted earlier, both the packet overhead and the speed of au-
thentication at the receiver are the core concerns for multicast stream authentication.
Since the relation between overhead and speed is central in this context and limits the
scope of applications of many schemes, we will emphasize that our protocol exhibits a
smaller overhead and a much faster authentication process than TWMDS making our
scheme more suitable for broadcast applications. As TWMDS, the non-repudiation of
the stream origin will be guaranteed using a digital signature.

The plan of this paper is as follows. In the next section, we introduce our network
model and recall a few results from [14]. Our authentication scheme is described in
Sect. 3 while its security and recovery property will be discussed in Sect. 4. In Sect. 5,
we present the benefits of our approach in term of overhead as well as authentication
speed at the receiver. Finally, we will sum up our contribution to the multicast authen-
tication problem over unsecured channels in Sect. 6.

2 Preliminaries

We now present our network model as well as an erasure correcting code we use in our
construction. We also recall a modified version of the algorithm Poly-Reconstruct by
Guruswami and Sudan [14] which will be used to deal with data injections and packet
drops as in [17, 39].

Network Model. We consider that the communication channel is under the influence of
an opponent O who can drop and rearrange packets of his choice as well as can inject
bogus data into the network. This corresponds to the unsecured communication channel
model described by Menezes et al. in [19]. We investigate the multicast stream authen-
tication problem. Thus we can assume that a reasonable number of original augmented
packets reaches the receivers and not too many incorrect chunks of data are injected by
O. Indeed, if too many original packets are dropped then data transmission becomes
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the main problem to treat since a small number of received packets would be probably
useless even if authenticated. On the other hand, if O injects a large number of forged
packets then the main problem becomes increasing the resistance against DoS attacks.
In order to build our signature amortization scheme, we need to split the data stream
into blocks of n packets: P1, . . . , Pn. We define two parameters: α (0 < α ≤ 1) (the
survival rate) and β (β ≥ 1) (the flood rate). It is assumed that at least a fraction α and
no more than a multiple β of the number of augmented packets are received. This means
that at least �αn� original augmented packets are received amongst a total which does
not exceed �βn� elements.

Code Construction. In our construction, we focus on linear codes to correct erasures. As
in [39], we use Maximum Distance Separable (MDS) codes [18]. As our scheme works
with any MDS code, we refer the reader to [39] for a discussion about which family of
MDS codes to choose for best efficiency. Note that any linear code can be represented
by a generator matrix G. Encoding a message m (represented as a row vector) means
computing the corresponding codeword c as: c := m G (see [18]).

Polynomial Reconstruction Algorithm. In [14], Guruswami and Sudan developed an
algorithm Poly-Reconstruct to solve the polynomial reconstruction problem. They
proved that if T points were given as input then their algorithm output the list of all
polynomials of degree at most K passing through at least N of the T points provided:
T >

√
KN . We will use the same version of Poly-Reconstruct as in [39] where it was

named MPR. Denote IF2q the field representing the coefficients of the polynomial. Ev-
ery element of IF2q can be represented as a polynomial of degree at most q − 1 over
IF2 (see [16]). Operations in IF2q are performed modulo a polynomial Q(X) of degree
q (Q(X) is irreducible over IF2).

MPR
Input:The maximal degree K of the polynomial Q(X), the minimal number N of agree-
able points, T points {(xi, yi), 1 ≤ i ≤ T } and the polynomial Q(X) of degree q.
1. If there are no more than

√
KN distinct points then the algorithm stops.

2. Using Q(X), run Poly-Reconstruct on the T points to get the list of all polynomials
of degree at most K over IF2q passing through at least N of the points.
3. Given the list {L1(X), . . . , Lμ(X)} obtained at Step 2. For each polynomial
Li(X) := Li,0 + . . . + Li,KXK where ∀i ∈ {0, . . . , K}Li,j ∈ IF2q , form the ele-
ments: Li := Li,0‖ · · · ‖Li,K .
Output: {L1, . . . , Lμ}: list of candidates

Note that Poly-Reconstruct runs in time quadratic in N and outputs a list of size at
most quadratic in N as well (see Theorem 6.12 and Lemma 6.13 from [13]). Algorithms
for implementing Poly-Reconstruct can be found in [22].

3 Our Hybrid Authentication Protocol

In order to guarantee the security of our construction, we need a collision resistant hash
function h (see [33]) and an unforgeable signature scheme (SignSK,VerifyPK) (see [38])
the key pair of which (SK,PK) is created by a generator KeyGen as in [15, 17, 39].
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Scheme Overview. Each block contains n data packets P1, . . . , Pn and is located within
the whole stream using its identification value BID. Our algorithms apply two steps.

The first step works as follows. Due to our network model, we want to generate n
augmented packets AP1, . . . , APn such that we can reconstruct the sequence of pack-
ets P1, . . . , Pn from any �α n�-subset of {AP1, . . . , APn}. Thus we need to encode
P1, . . . , Pn using a code which can correct up to n − �α n� erasures. Therefore we em-
ploy a [n, �α n�, n−�αn�+1] code. Notice that the use of such a code implies that the
elements of the code alphabet are larger than the size of a data packet as the message to
be encoded (M1 · · · M�α n�) should represent the concatenation P1‖ · · · ‖Pn.

The second step of our algorithm consists of building Merkle hash trees. If we de-
note (C1 · · · Cn) the codeword corresponding to the message (M1 · · · M�α n�) then we
partition the digests h(C1), . . . , h(Cn) into f families of �n

f � elements where f is an ef-
ficiency parameter (see Sect. 5). Remark that if f does not divide n then the last family
will be completed with dummy packets (consisting of zeros for simplicity). This family
padding has no effect on the number of augmented packets sent into the network as those
dummy elements will only be used to construct the last family tree. Since f and n will
be public, each receiver knows how many dummy packets to add for the last family. For
each family Fj := {h(C(j−1) �n

f �+1), . . . , h(Cj �n
f �)} (for j ∈ {1, . . . , f}) we build the

Merkle hash tree the leaves of which are the elements of Fj (see Fig. 1 for an example).

h(C5)h(C1) h(C2) h(C3) h(C4)

h(h(C1)‖h(C2)) h(h(C3)‖h(C4))

H14 := h(H12‖H34)

h(C6) h(C7) h(C8)

h(h(C5)‖h(C6)) h(h(C7)‖h(C8))

H58 := h(H56‖H78)

r1 := h(H14‖H58) (Root)

(Leaves)

H12 := H34 := H56 := H78 :=

Fig. 1. the Merkle hash tree of F1 when �n
f
� = 8

To provide authentication and non-repudiation and allow new members to join the
communication group at block boundaries, we sign the digest h(r1‖ · · · ‖rf ) where r1,
. . . , rf are the f tree roots. As in [39], we construct a polynomial A(X) of degree at
most ρn (for some rational constant ρ), the coefficients of which represent r1‖ · · · ‖rf‖σ
where σ is the signature. We build the augmented packets as:

∀i ∈ {1, . . . , n} APi := BID‖i‖Ci‖A(i)‖ path(i)

where path(i) denotes the �log2�n
f �� hashes needed to reconstruct the path from h(Ci)

to the root of his family tree. For instance on Fig. 1, we have path(2) = h(C1)‖H34‖H58.
As said earlier, BID denotes the position of the block P1, . . . , Pn within the stream.



22 C. Tartary, H. Wang, and J. Pieprzyk

Upon reception of data, the receiver checks the signature by reconstructing A(X)
using MPR. Once the signature σ is verified, the receiver knows the original tree roots
r1, . . . , rf . Thus he can identify the correct Ci’s amongst the list of elements he got by
checking which paths are correct within the f trees. According to the definition of α
there must be at least �αn� symbols from C1, . . . , Cn in his list. Finally, he corrects the
erasures using the MDS code and recovers the data packets P1, . . . , Pn.

Formal Scheme Construction. As in [39], we assume that α and β are rational numbers
so that we can represent them over a finite number of bits using their numerator and
denominator. In order to run Poly-Reconstruct as a part of MPR, we have to choose
ρ ∈ (0, α2

β ). Remark that it is suggested in [39] to choose ρ = α2

2 β to get a small list
returned by Poly-Reconstruct. Notice that ρ has to be rational since ρn is an integer.
We also consider that the [n, �α n�, n − �α n� + 1] code is uniquely determined (i.e. its
generator matrix G is known) when n, α, β and ρ are known. Denote IF2q̃ the field of this
MDS code. Due to space limitations, we omitted the construction of q, q̃ as well as the
different pads used by our scheme which can be found in the full version of this paper.
Table 1 summarizes the scheme parameters which are assumed to be publicly known.

Table 1. Public parameters for our authentication scheme

n: Block length Q̃(X): Polynomial representing the field for the MDS code
f : Number of families P : bit size of data packets
α, β: Network rates G: Generating matrix of the MDS code
ρ: Ratio Q(X): Polynomial representing the field for polynomial interpolation

The hash function h as well as the signature verification algorithm Verify and the sig-
nature public key PK are also assumed to be publicly known. We did not include them in
Table 1 since they can be considered as general parameters. For instance h can be SHA-
256 [23] while the digital signature is a 1024-bit RSA signature [34]. We denote H the
digest bit length and S the bit length of a signature. Since h and the digital signature are
publicly known, so are H and S.

Authenticator
Input: The secret key SK, the block number BID, Table 1 and n data packets P1, . . . , Pn.

/* Packet Encoding */

1. Parse P1‖ · · · ‖Pn as M1‖ · · · ‖M�αn� after padding. Encode the message
(M1 · · ·M�α n�) into the codeword (C1 · · ·Cn) using the MDS code.

/* Tree Construction */

2. For j from 1 to f do

Compute the digests h(C(j−1) �n
f �+1), . . . , h(Cj �n

f �) and build the Merkle hash

tree having the previous digests as leaves (as said earlier some padding with zeros
values may be needed when j = f ). Denote rj its root.

/* Signature Generation */
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3. Write R as R := r1‖ · · · ‖rf . Compute the family signature σ as
σ := SignSK(h(BID‖f‖n‖α‖β‖P‖R)). Parse R‖σ as a0‖ · · · ‖aρ n where each
ai ∈ IF2q after padding.

4. Construct the block polynomial A(X) := a0 + a1 X + · · · + aρ n Xρ n and evaluate
it at the first n points5 of IF2q .

/* Construction of Augmented Packets */

6. Build the augmented packet APi as APi := BID‖i‖Ci‖A(i)‖ path(i) where path(i)
is defined as in the scheme overview section.

Output: {AP1, . . . , APn}: set of augmented packets.

As in [39], assuming that α and β are rational enabled us to write α‖β over a finite
number of bits. It should be noticed that when (n, f, α, β,P , ρ) are given, each step of
Authenticator is uniquely determined as soon as (Q(X), G, Q̃(X)) are provided. Fur-
thermore since ρ only depends on α, β and n, it is realistic to presume that when (n, α, β)
are given, ρ is also uniquely determined. For instance, consider the remark made in [39]
where ρ is suggested to be set as α2

2 β . As a consequence, we can consider that when

(n, f, α, β,P) are given, (ρ, Q(X), G, Q̃(X)) are uniquely determined. This consider-
ation is identical to what is assumed in [39].

Decoder
Input: The public key PK, the block number BID, Table 1 and the set of received packets
RP.

/* Signature Verification and Root Recovery */

1. Write the packets as BIDi‖ji‖C′
ji

‖Aji‖ path′ji
and discard those having BIDi �= BID

or ji /∈ {1, . . . , n}. Denote N the number of remaining elements. If (N < �αn� or
N > �βn�) then the algorithm stops.

2. Rename the remaining elements as {AP′
1, . . . , AP′

N } and write each element as:
AP′

i = BID‖ji‖C′
ji

‖Aji‖ path′ji
where ji ∈ {1, . . . , n}. Run MPR on the set {(ji, Aji),

1 ≤ i ≤ N} to get a list L := {C1, . . . , Cμ} of candidates for signature verification. If
MPR rejects that set then the algorithm stops.

3. Set r′k = ∅ for k ∈ {1, . . . , f}. While the signature has not been verified and the list
L has not been exhausted, pick a new candidate r̃1‖ · · · ‖r̃f‖σ̃ after removing the pad.
If VerifyPK(h(BID‖f‖n‖α‖β‖P‖r̃1‖ · · · ‖r̃f ), σ̃) = TRUE then σ̃ is considered as the
authentic block signature σ and we set r′k = r̃k for k ∈ {1, . . . , f} as authentic tree
roots. If L is exhausted before the signature is verified then our algorithm stops.

/* Packet Decoding */

4. Set C′ := (∅, . . . , ∅). For each of the N remaining packets, BID‖ji‖C′
ji

‖Aji‖ path′ji
,

5 Any element of IF2q can be represented as λ0Y
0 + λ1Y1 + . . . + λq−1Y

q−1 where each λi

belongs to IF2. We define the first n elements as (0, . . . , 0) , (1, 0, . . . , 0) , (0, 1, 0, . . . , 0) ,
(1, 1, 0, . . . , 0) and so on until the binary decomposition of n − 1.
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we first compute its family number �ji as �ji :=
⌈

ji

�n/f�
⌉

. Second, if the path from

h(C′
ji

) to the value r′�ji
can be reconstructed using path′ji

then we set the jth
i coordinate

of C′ to Cji .

5. If C′ has less than �α n� non-erased coordinates then the algorithm stops.
Else
5.1. Correct the erasures of C′ using the MDS decoding process and denote
(M ′

1, . . . , M
′
�α n�) the corresponding message.

5.2. Remove the pad from M ′
1‖ · · · ‖M ′

�α n� and write the resulting string as
P ′

1‖ · · · ‖P ′
n.

Output: {P ′
1, . . . , P

′
n}: set of authenticated packets.

Note that when Decoder stops then the whole content of block BID is lost. Neverthe-
less the definitions of α and β ensure that this will never happen (see Theorem 2).

4 Security and Recovery Analysis

Security of the Scheme. We recall the security definition as presented in [39].

Definition 1 ([39]). (KeyGen,Authenticator,Decoder) is a secure and (α, β)-correct
multicast authentication scheme if no probabilistic polynomial-time opponent O can win
with a non-negligible probability to the following game:

i. A key pair (SK, PK) is generated by KeyGen.
ii. O is given: (a) The public key PK and (b) Oracle access to Authenticator (but O

can only issue at most one query with the same block identification tag BID).
iii. O outputs (BID, f, n, α, β,P , ρ, Q(X), Q̃(X), G, RP).

O wins if one of the following happens:

a. (correctness violation) O succeeds to output RP such that even if it contains �αn�
packets (amongst a total number of elements which does not exceed �βn�) for some
block identification tag BID, Decoder fails to identify all the correct packets.

b. (security violation) O succeeds to output RP such that Decoder outputs
{P ′

1, . . . , P
′
n} that was never authenticated by Authenticator for parameters

(BID, f, n, α, β,P , ρ, Q(X), Q̃(X), G).

We now show that our construction also satisfies the above security definition. The proof
of the following theorem can be found in Appendix A.

Theorem 1. Our scheme (KeyGen,Authenticator,Decoder) is secure and (α, β)-correct.

Recovery Property. We now show that our scheme enables any receiver to recover the
n data packets and the number of signature verifications to be performed per block is
upper bounded by the same value as for TWMDS. We recall the following definition:
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Definition 2 ([39]). Given a flow of n symbols, we say that the survival and flood rates
(α, β) are accurate if: (1) data are sent per block of n elements through the network
and (2) for any block of n elements {E1, · · · , En} emitted by the sender, if we denote
{Ẽ1, . . . , Ẽμ} the set of received packets then μ ≤ �βn� and at least �αn� elements
of {E1, · · · , En} belong to {Ẽ1, . . . , Ẽμ}. Condition (2) must be true for each receiver
belonging to the communication group.

From this point onwards, we assume that (α, β) is accurate for our network flow n. As
in [39], we have the following result whose proof can be found in Appendix B.

Theorem 2. For any BID, each receiver recovers the n original data packets P1, . . . ,
Pn. In addition the number of signature verifications to be performed is upper bounded
by U(n) := min(�U1(n)�, �U2(n)�) where:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U1(n) =
1
ρn

(
1√

α2 − βρ
− 1

)
+

β

α2 − βρ
+

1
ρ

U2(n) =
β

2(α2 − βρ)
+

1
ρ

+

√
β2 + 4

ρ2 n2 (1 − ρα)

2(α2 − βρ)
− 1

ρn

which is O(1) as a function of the block length n.

5 Efficiency Analysis

As said in Sect. 1, bandwidth limitations and authentication delay are two major con-
cerns for authentication protocols. In this section we will see that for a suitable choice of
f our construction can achieve smaller overhead than TWMDS while exhibiting a much
faster authentication at the receiver.

Packet Overhead. The packet overhead is the length of the extra tag of information used
to provide authentication. Notice that an augmented packet without a tag is assumed to
be written as: BID‖i‖Pi. Remember that the bit size of packets Pi is P .

Our augmented packets are written as BID‖i‖Ci‖A(i)‖ path(i). The element Ci is rep-

resented by
⌈

nP
�α n�

⌉
bits while A(i) requires

⌈
f H+S+λ

ρ n+1

⌉
bits where λ is the smallest

element of IN such that: ⌈
f H + S + λ

ρ n + 1

⌉
≥ �log2 n�

is verified (see the full version of the paper for details). The element path(i) consists of
�log2�n

f �� digests computed by h. Therefore, our packet overhead ω is equal to:

ω :=
⌈

nP
�α n�

⌉
− P +

⌈
f H + S + λ

ρ n + 1

⌉
+

⌈
log2

⌈
n
f

⌉⌉
H bits

The augmented packets of TWMDS are written as BID‖i‖Ci‖A(i) where Ci is rep-

resented over
⌈

nP
�α n�

⌉
bits while A(i) requires

⌈
nH+S
ρ n+1

⌉
bits. Therefore, the overhead

ωTWMDS of TWMDS is equal to:
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ωTWMDS :=
⌈

nP
�α n�

⌉
− P +

⌈
n H + S
ρ n + 1

⌉
bits

To illustrate the benefits of our approach over TWMDS, we will compute the ratio
ω

ωTWMDS
for different choices of P , α, β. We choose the network rates as in [39] and the

packet size to 512 and 4096 bits as in [32]. We pick n = 1000 as in those two works and
set ρ to α2

2 β as suggested in [39]. We used SHA-256 as a hash function and a 1024-bit
RSA signature scheme. The first step is to compute f minimizing our overhead ω. These
values are shown in Table 2 while the corresponding overhead ω is in Table 3.

Table 2. Number of families f minimizing ω when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 125 500 500 500 125 500 500 500

β 1.25 125 250 500 500 125 250 500 500

1.5 125 250 250 500 125 250 250 500

2 125 250 250 250 125 250 250 250

Table 3. Overhead of our construction ω when f is chosen as in Table 2 and n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 1569 930 827 663 5153 2125 1723 1062

β 1.25 1607 971 887 710 5191 2166 1783 1109

1.5 1672 1028 944 790 5256 2223 1840 1189

2 1801 1143 1044 889 5385 2338 1940 1288

Our comparison to TWMDS is depicted in Table 4. It clearly shows that our construc-
tion exhibits a smaller overhead than TWMDS. Our benefits get larger over networks
with small reliability (i.e. α is small) or highly polluted by O (i.e. β is large). Our con-
struction also seems to perform even better when the data packets are small.

Table 4. Ratio ω
ωTWMDS

when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 56.95% 79.28% 81.96% 87.93% 81.29% 89.74% 90.45% 92.11%

β 1.25 52.57% 74.18% 78.57% 83.73% 78.17% 86.50% 88.05% 88.93%

1.5 46.97% 66.97% 71.08% 78.53% 73.57% 81.43% 82.73% 84.63%

2 39.50% 57.55% 60.52% 67.30% 66.12% 73.50% 74.02% 74.88%
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Authentication Efficiency. We now compare the authentication delay at the receiver
between our construction and TWMDS. It should be noticed that the authentication part
of Decoder consists of Steps 1 to 4. Indeed Step 5 is dedicated to erasure correction which
is a non-authentication related feature. In those four steps, two points matter: the number
of signature verification queries and the quantity of information to be processed by h. In
our comparison, we focus on the worst case, i.e. we assume that the number of signature
verification is U(n). Note this is the same value as in [39]. In this situation, the number
of bits h1 processed by h is:

U(n) (|BID|+f H+|f |+�log2 n�+|α|+|β|+�log2 P�)+�β n� (P+2 �log2�n
f �� H)

As f ≤ n, we can assume that |f | = �log2 n� bits. Considering TWMDS, the number
of bits h2 processed by the hash function is:

U(n) (|BID| + n P + �log2 n� + |α| + |β| + �log2 P�) + �β n� P

Table 5 represents the ratio T :=
U(n) tS + h1 tH
U(n) tS + h2 tH

where tS denotes the number of

seconds required to perform one signature verification and tH is the number of seconds
to hash one bit. In [31], it is assumed that there are about 500 packets sent per second
in the network in the case of video broadcast. As n = 1000, we buffer roughly 2 sec-
onds of video per block. So if BID is represented over 30 bits, then it provides a stream
which can last at least 68 years. It is also realistic to assume that |α| and |β| are negli-
gible in comparison to |BID|, H, �log2 n� and �log2 P�. Our results are based on Dai’s
benchmarks [8].

Table 5. Ratio T when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 37.98% 54.08% 56.98% 60.85% 10.49% 19.14% 21.18% 23.89%

β 1.25 38.31% 56.40% 56.46% 59.64% 10.62% 19.41% 20.82% 23.04%

1.5 38.14% 55.22% 58.35% 60.26% 10.55% 18.84% 20.34% 23.48%

2 37.93% 53.85% 58.35% 68.25% 10.47% 18.19% 20.34% 25.03%

Table 5 shows that our construction is much faster than TWMDS. Note that we deliber-
ately removed the query to Poly-Reconstruct happening at Step 2 of Decoder. Neverthe-
less TWMDS also performs such a request. So if the time needed to run Poly-Reconstruct
is added to both numerator and denominator of T then the values of Table 5 will be flat-
tened but our scheme will nonetheless remain faster.

In [40], Tartary and Wang suggested to use the provably collision resistant trapdoor
hash function Very Smooth Hash (VSH) [7] instead of a digital signature to speed up the
running time at the receiver. Based on Contini et al.’s work, VSH is 25 times slower than
SHA-1 while it requires to use a 1516-bit modulus to achieve the same security level as
a 1024-bit RSA signature modulus. Table 6 describes the overhead for our construction,
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Table 6. Minimal overhead of our construction for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 1573 932 828 664 5157 2127 1724 1063

β 1.25 1612 973 888 712 5196 2168 1784 1111

1.5 1678 1031 946 791 5262 2226 1842 1190

2 1808 1146 1047 891 5392 2341 1943 1290

Table 7. Ratio ω
ωTWMDS

for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 57.10% 79.45% 82.06% 88.06% 81.35% 89.82% 90.50% 92.19%

β 1.25 52.73% 74.33% 78.65% 83.96% 78.24% 86.58% 88.10% 89.09%

1.5 47.13% 67.17% 71.23% 78.63% 73.66% 81.54% 82.82% 84.70%

2 39.65% 57.70% 60.70% 67.45% 66.21% 73.59% 74.13% 75.00%

Table 8. Ratio T for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 26.81% 43.71% 46.82% 50.97% 8.95% 17.72% 19.79% 22.54%

β 1.25 27.15% 46.02% 46.26% 49.74% 9.07% 17.98% 19.42% 21.68%

1.5 26.97% 44.79% 48.06% 50.33% 9.01% 17.41% 18.92% 22.12%

2 26.75% 43.36% 48.06% 58.38% 8.92% 16.74% 18.92% 23.68%

Table 7 depicts the ratio ω
ωTWMDS

and Table 8 represents the speed ratio T when VSH is
used instead of RSA.

One notices that using VSH slightly increases the overhead with respect to the digital
signature approach but it reduces the authentication time at the receiver even further.

6 Conclusion

In this paper, we presented an hybrid construction based on Merkle hash trees and
TWMDS. Our scheme is provably secure under the random oracle model and enables
new participants to join the communication group at every block boundary. As TWMDS,
our approach allows the whole data packets to be recovered at the receiver. The tradeoff
between overhead and authentication speed limits the application of many constructions.
The main benefits of this interaction between MDS codes and Merkle hash tree is that
our packet overhead and authentication speed are much smaller than for TWMDS. If the
number of families f is suitably chosen then, when using 512-bit packets, our overhead
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is between 39% and 88% of TWMDS while the authentication speed is between 66% and
92%. When using larger packets, the benefits of our construction increase even further
as the overhead then represents between 38% and 68% of TWMDS while the authen-
tication speed is between 11% and 25%. The advantages of our scheme are important
when the reliability of the network is small and the pollution due to the attacker is large.

We also saw that when we employed a trapdoor hash function such a VSH instead of a
digital signature as suggested in [40], the benefits of our scheme increased even further.

Acknowledgement

The authors are grateful to the anonymous reviewers for their comments to improve the
quality of this paper. This work was supported by the Australian Research Council under
ARC Discovery Projects DP0558773, DP0665035 and DP0663452. This work was sup-
ported in part by the National Natural Science Foundation of China Grant 60553001 and
the National Basic Research Program of China Grant 2007CB807900, 2007CB807901.
Christophe Tartary did some of this work while at Macquarie University where his re-
search was supported by an iMURS scholarship. The research of Huaxiong Wang is
partially supported by the Minitry of Education of Singapore under grant T206B2204.

References

[1] Al-Ibrahim, M., Pieprzyk, J.: Authenticating multicast streams in lossy channels using
threshold techniques. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 239–249.
Springer, Heidelberg (2001)
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A Proof of Theorem 1

Assume that the scheme is either insecure or not (α, β)-correct. By definition an oppo-
nent O can break the scheme security or correctness with a non-negligible probability
π(k) where k is the security parameter setting up the digital signature and the hash func-
tion. Therefore we must have either cases:

(1) With probability at least π(k)/2, O breaks the scheme correctness
(2) With probability at least π(k)/2, O breaks the scheme security

It should be noticed that since π(k) is a non-negligible function of k, so is π(k)/2.

Point (1). We claim that if O can break the scheme correctness in polynomial time then
either he can forge the digital signature or he can find a collision for the hash function
in polynomial time as well.

This will be proved by turning an attack breaking the (α, β)-correctness of our construc-
tion into a successful attack against either primitive.
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For this attack, O will have access to the signing algorithm SignSK (but O will not have
access to SK itself). He can use the public key PK as well as the collision resistant
hash function h. O will be allowed to run Authenticator whose queries are written as
(BIDi, fi, ni, αi, βi, Pi, ρi, Qi(X), Q̃i(X), DPi) where DPi is the set of ni data pack-
ets to be authenticated. In order to get the corresponding output, the signature is obtained
by querying SignSK as a black-box at Step 3 of Authenticator.

According to our hypothesis, O broke the correctness of the construction. This means
that, following the previous process, O managed to obtain values BID, f, n, α, β,P , ρ,
Q(X), Q̃(X) and a set of received packets RP such that:

– There exists a query value i such as:

(BID, f, n, α, β,P , ρ, Q(X), Q̃(X))=(BIDi, fi, ni, αi, βi, Pi, ρi, Qi(X), Q̃i(X))

Denote DP = {P1, . . . , Pn}(= DPi) the n data packets associated with this query
and AP the response given to O. In particular we denote σ the signature correspond-
ing to DP and generated as in Step 3 of Authenticator.

– |RP ∩ AP| ≥ �α n� and |RP| ≤ �β n�.

– {P ′
1, . . . , P

′
n} = Decoder(PK, BID, f, n, α, β,P , ρ, Q(X), Q̃(X), RP) where

P ′
ζ �= Pζ for some ζ ∈ {1, . . . , n}.

Assume that the digital signature is unforgeable and the hash function is collision
resistant.

Since |RP ∩ AP| ≥ �α n� and |RP| ≤ �β n�, Step 1 of Decoder ends successfully.
The consistency of Poly-Reconstruct involves that the list returned by MPR at Step 2
contains the element r1‖ · · · ‖rf‖σ corresponding to DP once the pad is removed. Note
that the length of the pad is uniquely determined once H, S, n and ρ are known. The
first two ones are general parameters while the others correspond to query i on DP.

The presence of r1‖ · · · ‖rf‖σ within the list returned by MPR involves that at least
one pair message/signature will go through the verification process at Step 3 of Decoder.
As the digital signature is unforgeable and the hash function is collision resistant, this
pair will be the only one for which VerifyPK ends successfully. Indeed denote R̃‖σ̃ an
element from the list such that:

VerifyPK(h(BID‖f‖n‖α‖β‖P‖R̃), σ̃) = TRUE

By hypothesis, O is allowed to perform a polynomial number of queries to Authentica-
tor and no more than one query per block identification value. Denote � the number of
queries done by O, BID1, . . . , BID� the � block identification values and R1‖σ1, . . . ,
R�‖σ� the corresponding � concatenations of tree roots/signatures. Note that we are cur-
rently working with iteration number i since BID = BIDi.

Since the signature scheme is secure we get σ̃ ∈ {σ1, . . . , σ�}. This means:
∃i0 ∈ {1, . . . , �}/σ̃ = σi0 . The security of the digital signature involves i0 = i as
O cannot query Authenticator more than once per block identification value. Thus: σ̃ =
σi = σ. For the same reason we get:

h(BID‖f‖n‖α‖β‖P‖ Ri︸︷︷︸
R

) = h(BID‖f‖n‖α‖β‖P‖R̃)
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Since h is collision resistant we get: R̃‖σ̃ = R‖σ which corresponds to the data packets
DP (= DPi).

Therefore at the end of Step 3 we have recovered the f tree roots, that is:

∀i ∈ {1, . . . , f} r′i = ri

Since h is collision resistant, it is obvious that, for any element of RP written as
BID‖ji‖C′

ji
‖Aji‖ path′ji

, if path′ji
can be used to recover the path of h(C′

ji
) to the root

of his tree r′�ji
= r�ji

then C′
ji

= Cji . This corresponds to the use of the Merkle hash
trees as collision resistant accumulators as in [15]. This involves that, at the end of Step
4 of Decoder, we have:

∀ξ ∈ {1, . . . , n} C′
ξ ∈ {∅, Cξ} where C′ = (C′

1 · · · C′
n)

Since |RP∩AP| ≥ �α n�, we deduce that at least �α n� coordinates of C′ are non-empty
at the end of Step 4. Since the code can correct up to n − �α n� erasures we get:

∀ξ ∈ {1, . . . , �α n�} M ′
ξ = Mξ

at the end of Step 5.1. Therefore we get:

∀ξ ∈ {1, . . . , n} P ′
ξ = Pξ

We obtain a contradiction with our original hypothesis which stipulated
∃j ∈ {1, . . . , n} P ′

j �= Pj . As a consequence, we deduce that either the hash func-
tion is not collision resistant or the digital signature is not secure.

Point (2). We claim that if O can break the scheme correctness in polynomial time then
either he can forge the digital signature or he can find a collision for the hash function
in polynomial time as well.

We consider the same kind of reduction as in Point (1). The opponent O breaks the
security of the scheme if one of the following holds:

I. Authenticator was never queried on input BID, f, n, α, β,P , ρ, Q(X), Q̃(X) and the
decoding algorithm Decoder does not reject RP, i.e. {P ′

1, . . . , P
′
n} �= ∅ where {P ′

1,

. . . , P ′
n} = Decoder(BID, f, n, α, β,P , ρ, Q(X), Q̃(X), RP).

II. Authenticator was queried on input BID, f, n, α, β,P , ρ, Q(X), Q̃(X) for some data
packets DP = {P1, . . . , Pn}. Nevertheless the output of Decoder verifies P ′

j �= Pj for
some j ∈ {1, . . . , n}.

Case I. Since Decoder output some non-empty packets, Step 3 had to terminate success-
fully. In particular it has been found a pair (h(BID‖f‖n‖α‖β‖P‖R), σ) (after removing
the pad) such that:

VerifyPK(h(BID‖f‖n‖α‖β‖P‖R), σ) = TRUE

If O never queried Authenticator for block tag BID then the previous pair is a forgery
of the digital signature.
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If O queried Authenticator for block tag BID then denote (BID, fi, ni, αi, βi, Pi, ρi,

Qi(X), Q̃i(X)) his query. By hypothesis we have:

(BID, fi, ni, αi, βi, Pi, ρi, Qi(X), Q̃i(X)) �= (BID, f, n, α, β,P , ρ, Q(X), Q̃(X))

As said in Sect. 3, when (n, f, α, β,P) are given, (ρ, Q(X), G, Q̃(X)) are uniquely
determined. Thus the previous relation is equivalent to:

(BID, fi, ni, αi, βi, Pi) �= (BID, f, n, α, β,P)

Therefore either the previous pair message/signature is a forgery of the signature scheme
or the pair (BID‖fi‖ni‖αi‖βi‖Pi‖Ri, BID‖f‖n‖α‖β‖P‖R) is a collision for the hash
function f .

Case II. We have the same situation as Point (1).

B Proof of Theorem 2

Let BID be fixed. Due to the accuracy of (α, β), we could demonstrate as in [39] that, at
the end of Step 3 of Decoder, the receiver has recovered the signature σ as well as the f
tree roots r1, . . . , rf . Similarly to Wong and Lam’s and Karlof et al.’s approaches [15, 41]
which both relies on a Merkle hash tree construction, Step 4 enables us to identify all
correct codeword coordinates amongst the set of received elements since h is a collision
resistant hash function. Due to the accuracy of (α, β), we have at least �α n� values
which are consistent with (C1 · · · Cn). Thus Step 5 successfully ends since the code can
correct up to n−�αn� erasures. As a consequence, Decoder outputs the whole n original
packets, that is: ∀i ∈ {1, . . . , n} P ′

i = Pi.
As we use the same settings as in [39], we deduce that U(n) ∈ O(1) is also a bound on

the size of the list output by Poly-Reconstruct for our construction. The reader interested
in the details is referred to [39].
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Abstract. In a threshold broadcast encryption scheme, a sender chooses
(ad-hoc) a set of n receivers and a threshold t, and then encrypts a mes-
sage by using the public keys of all the receivers, in such a way that
the original plaintext can be recovered only if at least t receivers coop-
erate. Previously proposed threshold broadcast encryption schemes have
ciphertexts whose length is at least n + O(1). In this paper, we pro-
pose new schemes, for both PKI and identity-based scenarios, where the
ciphertexts’ length is n − t + O(1). The constructions use secret shar-
ing techniques and the Canetti-Halevi-Katz transformation to achieve
chosen-ciphertext security. The security of our schemes is formally proved
under the Decisional Bilinear Diffie-Hellman (DBDH) Assumption.

1 Introduction

In a threshold public key encryption scheme a message is encrypted and sent to
a group of receivers, in such a way that the cooperation of at least t of them
(where t is the threshold) is necessary in order to recover the original message.
Such schemes have many applications in situations where one wants to avoid that
a single party has all the power/responsibility to protect or obtain some critical
information. The usual strategy to implement this idea is the following: the set
of receivers, which is decided on from the beginning, runs an interactive setup
protocol which takes as input a threshold (chosen by themselves) and outputs a
public key for the set and shares of the matching secret key.

The fact that the set of receivers and the threshold are set from the beginning
can limit the applications of these schemes in real life. One can imagine that
the sender of the message, who wants to protect some information, may want

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 35–50, 2007.
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to decide who will be the designated receivers in an ad-hoc way, just before
encrypting the message, and also decide the threshold of receivers which will be
necessary to recover the information (e.g. depending on the secrecy level desired
for the message). With this motivation in mind, a scheme for this situation would
have the following properties:

1. There is no setup phase or predefined groups. Each potential receiver has
his own pair of secret/public keys.

2. The sender chooses (ad-hoc) the set of receivers P and the threshold t for
the decryption. Then he encrypts the message by using the public keys of all the
receivers in P .

3. A ciphertext corresponding to the pair (P , t) can only be decrypted if
at least t members of P cooperate by using their secret keys. Otherwise, it is
computationally infeasible to obtain any information about the plaintext.

Note that, when t = 1, the resulting scheme will be a broadcast encryption
scheme [15], where a sender encrypts a message in such a way that any member
of the set of receivers can decrypt it. For this reason, we have decided to use
the name threshold broadcast encryption scheme (TBE scheme, for short) to
refer to this kind of schemes. Other possible names could be dynamic threshold
encryption (as used in [16]) or ad-hoc threshold encryption. To the best of our
knowledge, very few works have dealt with this extension of the concept of
broadcast encryption. In [16] the authors propose a scheme based on RSA; even
if the authors claim that the length of the ciphertexts is constant, the ciphertext
contains an integer modulo N , where N is the product of all the RSA moduli of
the receivers. Therefore, the actual length of the ciphertext is O(n), where n is
the number of receivers. A different scheme where the length of the ciphertexts
is again n + O(1) is included in [17]. In [12], the authors propose a TBE scheme
for identity-based scenarios; again, the length of the ciphertexts is n + O(1). In
this same work [12], and previously in [10], a naive solution to the problem of
threshold broadcast encryption was sketched: the sender distributes the message
m into n pieces mi, by using a threshold secret sharing scheme [19], and then
encrypts each mi by using the public key of the i-th receiver. The length of the
ciphertext is also O(n).

In this paper we propose two new threshold broadcast encryption schemes, one
for PKI-based scenarios and one for identity-based scenarios, where the length
of the ciphertexts is n − t + O(1), being n the number of receivers and t the
threshold for the decryption. We do not include the description of the set of
receivers when we measure the length of the ciphertext; such a description can
be quite short (for example, if the receivers are all the members of a company)
or can be O(n)-long, if the best/only way to describe the set is by including all
the public keys of the receivers.

The idea in the design of our schemes is to combine the following tools: (1) a
chosen plaintext selective-ID secure identity-based encryption scheme; (2) some
secret sharing techniques to create, for each encryption, an ad-hoc master public
key whose matching master secret key will be distributed among the receivers
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of the message; (3) and the generic transformation due to Canetti, Halevi and
Katz [11], to achieve chosen-ciphertext security. This last transformation has
already been used by Boneh, Boyen and Halevi to construct a standard threshold
encryption scheme [6] where interaction is not required among the decrypting
servers (which differs from other previous schemes [21,10]). This property is very
desirable in our scenario of threshold broadcast encryption, where the receivers
are chosen ad-hoc and maybe they do not know each other.

Our scheme for PKI-based scenarios uses a scheme by Boneh and Boyen [5] as
the selective-ID secure identity-based encryption scheme. In this way, security
of the resulting threshold broadcast encryption scheme under chosen-ciphertext
attacks can be proved in the standard model. For the identity-based scenario,
it is necessary to combine the techniques in the scheme of Boneh-Franklin [8]
and the techniques in [5]; as a result, the security of the obtained identity-based
threshold broadcast encryption scheme is proved in the random oracle model.

The rest of the work is organized as follows. In Section 2 we recall some tools
(secret sharing, bilinear pairings, one-time signatures) that will be necessary for
the construction of our schemes. In Section 3 we give the general definitions
of the protocols and the security definitions for threshold broadcast encryption
schemes. We propose our PKI-based scheme in Section 4, and we formally prove
its security by reduction to the hardness of the Decisional Bilinear Diffie-Hellman
(DBDH) problem. The description of our identity-based scheme is sketched in
Section 5. The conclusions of our work and some related open problems are given
in Section 6.

2 Preliminaries

2.1 Threshold Secret Sharing Schemes

The idea of secret sharing schemes was independently introduced by Shamir [19]
and Blakley [4]. A (d, N)-threshold secret sharing scheme is a method by means
of which a special figure, usually called dealer, distributes a secret s among a
set P = {R1, . . . , RN} of N players. Each player Ri privately receives from the
dealer a piece of information si (or share). Then, those subsets with at least d
players can recover the secret s from their shares, while subsets containing less
than d players do not obtain any information at all about the secret.

Shamir’s secret sharing scheme [19] solves this problem by means of polyno-
mial interpolation. Let GF (q) be a finite field with q > N elements, and let
s ∈ GF (q) be the secret to be shared. The dealer picks a polynomial f(x) of de-
gree at most d−1, where the constant term of f(x) is s and all other coefficients
aj are selected from GF (q), uniformly and independently, at random. That is,
f(x) has the form f(x) = s +

∑d−1
j=1 ajx

j .
Every player Ri is publicly and uniquely associated to a field element αi. The

dealer privately sends to player Ri his share si = f(αi), for i = 1, . . . , N .
Now, players in a set A ⊂ P such that |A| ≥ d can recover the secret s = f(0),

by using Lagrange interpolation. Actually, players in A can compute the value
of the polynomial f(x) evaluated on any point αj , with the formula:
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f(αj) =
∑

Ri∈A

λA
ijf(αi) =

∑
Ri∈A

λA
ijsi,

where λA
ij =

∏
R�∈A,� �=i

αj−α�

αi−α�
.

On the other hand, it can be proved that players in a subset B ⊂ P such that
|B| < d do not obtain any information about the polynomial f(x), apart from
their shares {f(αk)}Rk∈B, of course.

2.2 Bilinear Pairings and Assumptions

Given an additive group G1 = 〈P 〉 and a multiplicative group G2, both with
prime order q, we say that they admit a bilinear pairing if there exists a map
e : G1 × G1 → G2 satisfying the following properties:

1. it is bilinear: e(aP, bP ) = e(P, P )ab = e(bP, aP ), for all a, b ∈ Zq;
2. it can be efficiently computed for any possible input pair;
3. it is non-degenerate, which means that e(P, P ) �= 1.

Bilinear pairings like the Tate or Weil pairings can be constructed over groups
defined on elliptic curves. In the last years, bilinear pairings have been widely
used in cryptography, for example in the design of identity-based cryptographic
protocols. Identity-based cryptography was introduced by Shamir [20] as an al-
ternative to traditional PKI-based cryptography, to avoid the efficiency problems
related to the management of digital certificates which link a user with his public
key. In identity-based cryptography, the public key of each user can be directly
and publicly obtained from his identity, so an external link is not necessary. The
negative point is that the secret keys of the users must be computed by a totally
trusted (master) entity.

The security of these cryptographic schemes employing bilinear pairings is
based on the assumption that some problems are hard to solve. These problems
are adaptations to the bilinear pairing setting of more studied and standard
computational problems, like the Decisional Diffie-Hellman (DDH) problem. The
security of the schemes that we propose in this paper is based on the hardness
of the following problem.

Definition 1. (Decisional Bilinear Diffie-Hellman problem). We say that an
algorithm S is a ε′-solver of the DBDH problem if it distinguishes with probability
at least 1/2 + ε′ between the two following probability distributions:

DBDH = (P, aP, bP, cP, e(P, P )abc), where a, b, c are chosen uniformly and
independently in Zq,

Drand = (P, aP, bP, cP, T ), where a, b, c are chosen uniformly and indepen-
dently in Zq and T is chosen uniformly and independently in G2.

In other words, a challenger chooses at random a bit d ∈ {0, 1}. If d = 1, a tuple
taken at random from DBDH is given to S. If d = 0, a tuple taken at random from
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Drand is given to S. The goal of S is to guess the bit d with better probability
than at random. The Decisional Bilinear Diffie Hellman Assumption states that
there does not exist any ε′-solver of the DBDH problem for non-negligible values
of ε′.

2.3 One-Time Signatures

A one-time signature scheme Σ = (Σ.KG, Σ.Sign, Σ.Verify) consists of the three
typical protocols of a digital signature scheme. Σ.KG(1k) → (SK, V K) is the
key generation protocol, which outputs a secret signing key SK and a public
verification key V K. The signing protocol Σ.Sign(SK, M) → σ takes as input
the signing key and a message M , and outputs a signature σ. Finally, the verifi-
cation protocol Σ.Verify(V K, M, σ) → 1 or 0 takes as input the verification key,
a message and a signature, and outputs 1 if the signature is valid, or 0 otherwise.

Regarding security, we consider an adversary who first receives a verification
key V K obtained from Σ.KG(1k) → (SK, V K). He can make at most one
signature query for a message M of his choice, obtaining as answer a valid
signature Σ.Sign(SK, M) → σ, and finally outputs a pair (M ′, σ′). We say that
the adversary succeeds if (M ′, σ′) �= (M, σ) and Σ.Verify(V K, M ′, σ′) → 1.

A one-time signature scheme Σ is εΣ-secure if any polynomial-time adversary
against Σ has a success probability bounded by εΣ .

3 Threshold Broadcast Encryption

Roughly speaking, the operations of a threshold broadcast encryption scheme
work as follows: the sender chooses a set of receivers and a threshold t, and then
encrypts a message by using the public keys of these receivers. Given the resulting
ciphertext, the original message can be recovered by any set of at least t of the
designated receivers: they use their secret keys to compute partial decryptions
which are then combined to obtain the message.

More formally, a threshold broadcast encryption scheme TBE= (TBE.Setup,
TBE.KG, TBE.Enc, TBE.PartDec, TBE.Dec) consists of five algorithms:

– The randomized setup algorithm TBE.Setup takes as input a security param-
eter k and outputs some public parameters params, which will be common
to all the users of the system. We write params ← TBE.Setup(1k).

– The randomized key generation algorithm TBE.KG is run by each user Ri. It
takes as input some public parameters params and returns a pair (PKi, SKi)
consisting of a public key and a matching secret key; we denote an execution
of this protocol as (PKi, SKi) ← TBE.KG(params).

– The randomized encryption algorithm TBE.Enc takes as input a set of public
keys {PKi}Ri∈P corresponding to a set P of n receivers, a threshold t satisfy-
ing 1 ≤ t ≤ n, and a message m. The output is a ciphertext C, which contains
the description of P and t; we write C ← TBE.Enc(P , {PKi}Ri∈P , t, m).

– The (possibly randomized) partial decryption algorithm TBE.PartDec takes
as input a ciphertext C for the pair (P , t) and a secret key SKi of a receiver
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Ri ∈ P . The output is a partial decryption value κi or a special symbol ⊥.
We denote with κi ← TBE.PartDec(C, SKi) an execution of this protocol.

– The deterministic final decryption algorithm TBE.Dec takes as input a ci-
phertext C for the pair (P , t) and t partial decryptions {κi}Ri∈A correspond-
ing to receivers in some subset A ⊂ P . The output is a message m or a special
symbol ⊥. We write m̃ ← TBE.Dec(C, {κi}Ri∈A, A).

An important parameter of such schemes is the length of the ciphertext C. When
measuring this length, we will not consider the description of the set P : in some
cases, the description can consist of the list of all the public keys, which already
has length O(n). In some other cases, the description can be much simpler, for
example if the set of receivers is formed by the workers of a company. For the
previous TBE schemes in the literature [16,17,12], the length of the ciphertexts
is n + O(1). In this paper we will propose new schemes where the length of the
ciphertexts is n − t + O(1).

3.1 Security of Threshold Broadcast Encryption Schemes

When formalizing security of standard public key encryption schemes, one usu-
ally considers a single challenged public key. This is because it has been shown
[2] that security in this model is equivalent to security in a model which considers
many public keys.

In threshold broadcast encryption schemes, however, we must consider many
public keys when we formalize security, because each encryption and decryption
in the system involves many public/secret keys. An attacker can corrupt differ-
ent users, in two possible ways: registering new public keys for such users, or
obtaining the secret key matching with the public key of some previously hon-
est users. The final goal of the attacker is to obtain some information about a
message which has been encrypted for a pair (P∗, t∗) such that the number of
corrupted players in P∗ is less than t∗.

For simplicity, we will not consider the first kind of user corruption, where
the adversary registers new public keys. The reason is that, in the real world,
certification authorities (should) require users to prove the knowledge of the
secret key which matches with the public key they are registering. This can
be done by means of a Proof of Knowledge [3]. In the game which models the
security of threshold broadcast encryption schemes, the attacker is required to
perform such a Proof of Knowledge of the secret keys which match with the new
public keys he wants to register. Because of the ‘proof of knowledge’ property
of the employed Proof of Knowledge system [3], this is equivalent to requiring
the adversary to supply the matching secret key, each time he registers a public
key. Therefore, registering new public keys does not give any useful information
to the adversary.

Taking all this into consideration, indistinguishability for threshold broadcast
encryption schemes is defined by considering the following game that an attacker
Aatk plays against a challenger:
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U = ∅
params ← TBE.Setup(1k)
Each time Aatk requires the creation of a new user Ri,
(PKi, SKi) ← TBE.KG(params) is executed and Ri is added to U
(St, P∗, t∗, m0, m1) ← ACorr,O1(·)

atk (find, params, {PKi}Ri∈U )
β ← {0, 1} at random; C∗ ← TBE.Enc(P∗, {pki}Ri∈P∗ , t∗, mβ)
β′ ← ACorr,O2(·)

atk (guess, C∗, St).

In both phases of the attack, Aatk has access to a corruption oracle Corr:
Aatk submits to the oracle a user Ri ∈ U , and must receive as answer his secret
key SKi. Let U ′ ⊂ U be the subset of users that Aatk has corrupted during the
attack. In order to consider meaningful and successful such an attack, we require
|P∗ ∩ U ′| < t∗. Otherwise, Aatk knows the secret key of at least t∗ players in P∗

and can decrypt C∗ by himself, obtaining mβ .
Depending on the considered kind of attacks, Aatk can also have access to

a decryption oracle for ciphertexts C of his choice. As answer, Aatk receives
all the information that would be broadcast in a complete decryption process
for this tuple; this includes all the partial decryption values and the resulting
plaintext. If atk is a chosen plaintext attack (CPA), then there is no access at
all, i.e. O1 = O2 = ε. If atk is a partial chosen ciphertext attack (CCA1), then
O1 = TBE.PartDec(·) ∪ TBE.Dec(·) and O2 = ε. Finally, if atk is a full chosen
ciphertext attack (CCA2), then O1 = O2 = TBE.PartDec(·) ∪ TBE.Dec(·). In
this last case, ACCA2 is not allowed to query the oracle O2 with the challenge
ciphertext C∗.

The advantage of such an adversary Aatk is defined as

Adv(Aatk) = Pr[β′ = β] − 1
2
.

A threshold broadcast encryption scheme is said to be ε-indistinguishable un-
der atk attacks if Adv(Aatk) < ε for any attacker Aatk which runs in polynomial
time. The CCA2 level of security is quite restrictive; for example, a CCA2 attack
can be easily constructed against the naive solution to the problem of threshold
broadcast encryption, where the message is divided into n shares and each share
is encrypted for one different receiver.

Note that the definitions in this section (with slight changes) are valid also
for identity-based scenarios: params will include a master public key, whereas
the corresponding master secret key is used to compute secret keys for the users
(identities) in a Key Extraction protocol. The sets of receivers will be sets of
identities P = {ID1, . . . , IDn}. In the security game, the adversary is allowed to
make key extraction (i.e. corruption) queries in order to obtain the secret keys
for identities of his choice; this is reflected by the oracle Corr in the game above.

4 A PKI-Based Threshold Broadcast Encryption Scheme
with |C| ≈ n − t

The idea behind the design of our scheme is to combine some threshold secret
sharing techniques with the Canetti et al. [11] generic transformation, applied to
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the first selective-ID secure identity-based encryption scheme proposed by Boneh
and Boyen in [5]. Note that the same idea has been used to construct a standard
threshold encryption scheme (with fixed threshold and set of receivers) in [6].
The resulting schemes (ours and the one in [6]) enjoy two very good properties:
security can be proved in the standard model and no interaction is needed among
the receivers at the time of decryption.

The public parameters of our TBE scheme will be the public parameters of
the scheme in [5] along with part (all but one element) of the master public key.
The remaining element of the master public key will be computed ad-hoc by the
sender of the message, from the public keys of the n receivers, in such a way that
the corresponding ad-hoc master secret key is distributed into the secret keys
of the receivers, by means of a (n, N)-threshold secret sharing scheme, where
N = 2n − t.

Then, the sender generates a fresh pair of keys (SK, V K) for a one-time sig-
nature scheme, and encrypts the desired message by using the resulting identity-
based public parameters and the identity ID = V K. Intuitively, n shares of the
master secret key would be necessary to compute the secret key for the identity
ID = V K and therefore decrypt the ciphertext. The sender creates a subset of
n − t dummy users, out of the set of receivers, and adds to the ciphertext the
secret decryption information that these users would provide. As a result, only t
other partial decryption values, coming from the designated set of receivers, will
be necessary to correctly perform decryption. Following the techniques in [11],
the ciphertext is signed with SK. The resulting signature and the verification
key V K are appended to the ciphertext.

There are some alternative to the use of one-time signatures in the generic
constructions in [11], which provide the same security level with a better effi-
ciency; for example, by using message authentication codes and commitments
[7] or chamaleon hash functions [1]. These techniques could also be applied to
our constructions, but we have chosen one-time signatures for simplicity of the
scheme description and the proofs. Note that all these techniques are needed to
achieve chosen-ciphertext (CCA2) security. For chosen-plaintext (CPA) security
only, it is possible to design simple schemes, based on ElGamal for example,
which do not employ bilinear pairings (see [14]).

In the two following sections, we detail the protocols of the proposed scheme
for PKI scenarios and the security proof.

4.1 The Scheme

Let Σ = (Σ.KG, Σ.Sign, Σ.Verify) be a secure one-time signature scheme. The
five algorithms of the new TBE scheme work as follows.

Setup. Given a security parameter k, it generates a prime number q with k
bits, and groups G1 = 〈P 〉, G2 with order q which admit a bilinear pairing
e : G1 × G1 → G2, as described in Section 2.2. A hash function h : {0, 1}∗ → Zq

is chosen, along with two random elements P1 and Q from G1. The output of the
protocol is params = (q, G1, G2, P, e, h, P1, Q). Any user Ri of the scheme will be
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publicly associated to a different element αi ∈ Zq (for the secret sharing scheme).
This can be done by defining αi = g(Ri) for some public and collision-resistant
hash function g : {0, 1}∗ → Zq.

Key Generation. Each player (potential receiver) Ri chooses at random a value
γi ∈ Z

∗
q . The public key is PKi = γiP , whereas the secret key is SKi = γiP1.

Encryption. The goal is to encrypt a message m ∈ G2 addressed to some set
P = {R1, . . . , Rn} of n receivers, with threshold t for the decryption. The n
public keys of the receivers implicitly define a n−1 degree polynomial. The idea
is to compute the values of this polynomial in the points α0 = 0 (this will be the
value P2) and in some dummy points αj (these will be values ˜PKj), by using
the corresponding Lagrange coefficients, defined in Section 2.1. Note that these
values P2, { ˜PKj}Pj∈P̃ are univocally determined from the public keys of the
receivers, so they can be re-used every time a message is encrypted for this set
of players (independently of the decryption threshold). Specifically, the sender
must act as follows.

1. Run Σ.KG(1k) → (SK, V K).
2. Define P2 =

∑
Ri∈P

λP
i0PKi.

3. Choose at random s ∈ Z
∗
q and compute C1 = sP .

4. Compute C2 = m · e(P1, P2)s.
5. Compute C3 = s [h(V K)P1 + Q].
6. Choose a set P̃ of n−t (dummy) players, such that P̃ ∩P = ∅. For each Rj ∈

P̃ , consider the corresponding αj ∈ Zq and then define ˜PKj =
∑

Ri∈P
λP

ijPKi.

Note that this dummy value ˜PKj is not necessarily equal to the real public
key PKj of user Rj .

7. For each Rj ∈ P̃ , choose rj ∈ Zq at random and compute

κj =
e(C3, rjP )

e( ˜PKj , sP1) · e(C1, rj [h(V K)P1 + Q])
.

8. Define C′ = (P , t, P̃ , C1, C2, C3, {κj}Rj∈P̃).
9. Run Σ.Sign(SK, C′) → σ.

10. Define the final ciphertext as C = (V K, C′, σ).

Note that, excluding the description of the sets P and P̃, which can have
different lengths depending on the case, a ciphertext C contains n−t+3 elements.
The description of the set P̃ can actually be very short; for example, the sender
can look for an interval of n − t integers J = {j0, j0 + 1, . . . , j0 + n − t − 1}
(modulo q) such that αi /∈ J for all Pi ∈ P , and define the set P̃ simply as the
n − t dummy users Pj (real or not) whose associated values are αj ∈ J . Note
that in this case, the value j0 is enough to describe the set P̃ . Such an interval
J exists as long as n(n − t) < q − 1, which is very likely to happen since q is a
very large number.
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The cost to pay for this improvement in the ciphertexts’ length is a more
inefficient encryption protocol. Compared with the proposal in [12] (which is
the only previous TBE scheme which achieves CCA2 security), our encryption
protocol requires n− t+3 pairing computations, whereas the scheme in [12] does
not require any pairing computation. The efficiency for the rest of the protocols
of our scheme is very similar to the efficiency of [12].

Partial Decryption, EG TBE.PartDec. Given a ciphertext C = (V K, C′, σ),
any receiver Ri ∈ P first runs Σ.Verify(V K, C′, σ). If the result is 0 (invalid
ciphertext), then the special symbol ⊥ is output. Otherwise (valid ciphertext)
let C′ = (P , t, P̃, C1, C2, C3, {κj}Rj∈P̃). Receiver Ri chooses ri ∈ Zq at random;
the partial decryption that is broadcast by Ri is

κi =
e(C3, riP )

e(C1, SKi + ri[h(V K)P1 + Q])
.

Final Decryption, EG TBE.Dec. Given a valid ciphertext C = (V K, C′, σ),
with C′ = (P , t, P̃, C1, C2, C3, {κj}Rj∈P̃), and a set of t partial decryptions κi,
corresponding to a subset A ⊂ P with |A| = t, a combiner algorithm considers
the whole set of partial decryptions in B = A ∪ P̃ and then computes

κ =
∏

Ri∈B

κ
λB

i0
i = . . . =

1
e(P1, P2)s

.

The plaintext m is recovered by computing m = C2 · κ.

4.2 Provable Security

Theorem 1. Suppose Σ is εΣ-secure, which means that any polynomial-time
forger against Σ has a success probability bounded by εΣ.

If there exists a CCA2 attack A against the proposed TBE scheme, with ad-
vantage ε and corrupting at most qc users, then the Decisional Bilinear Diffie-
Hellman (DBDH) problem can be solved with advantage ε′ ≥ ε(1−εΣ)

6(qc+1) .

Proof. Let D = (P, aP, bP, cP, T ) be an instance of the DBDH problem (which
includes the description of G1 = 〈P 〉, G2, e). The goal of a solver S is to decide if
D ∈ DBDH (that is, if T = e(P, P )abc), or if D ∈ Drand (that is, if T is a random
value in G2). In the first case, the output of a solver is the bit d = 1, whereas
in the second case, the output is the bit d = 0. We are going to construct
such a solver S for this problem. S first runs Σ.KG(1k) → (SK∗, V K∗). S
chooses two suitable hash functions h, g : {0, 1}∗ → Zq. The solver chooses at
random η ∈ Zq and defines P1 = aP and Q = −h(V K∗)P1 + ηP . At this point,
S initializes the hypothetical attacker A against the TBE scheme, with input
params = (q, G1, G2, P, e, h, g, P1, Q).

Each time A asks for the creation of a new user Ri, the solver S chooses at
random γi ∈ Z

∗
q . Let μ ∈ (0, 1) be a real number to be determined later. With
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probability μ, the value ci = 0 is chosen, and then S defines PKi = γiP (in this
case, SKi = γiP1 is known to S). On the other hand, with probability 1 − μ,
the value ci = 1 is chosen, and S defines PKi = γi(bP ) (in this case, S does not
know the value of SKi). The public key PKi is sent back to A. These values are
stored in a table.

A is allowed to corrupt some users. If A sends a corruption query for user Ri,
the solver S looks for ci in the table. If ci = 0, then the value SKi = γiP1 (along
with γi, if required by A) is sent to A. Otherwise, if ci = 1, the solver S aborts
and outputs a random bit d ∈ {0, 1}. If the number of corruption queries from
A is qc, then the probability that S does not abort in this phase is μqc .

The CCA2 attacker A can make decryption queries for ciphertexts C =
(V K, C′, σ) of his choice. The solver S acts as follows:

– If V K = V K∗, then S runs Σ.Verify(V K, C′, σ). If the output is 0, S replies
with ⊥. If the output is 1 (valid signature), then S aborts and outputs a
random bit d ∈ {0, 1}.

– If V K �= V K∗ and Σ.Verify(V K, C′, σ) outputs 0, then S replies with ⊥.
– If V K �= V K∗ and Σ.Verify(V K, C′, σ) outputs 1, then we have C′ =

(P , t, P̃, C1, C2, C3, {κj}Rj∈P̃) and h(V K) �= h(V K∗) (otherwise, A would
have found a collision on the hash function h, which is considered to be com-
putationally infeasible). The solver S must simulate the partial decryption
values κi for Ri ∈ P . If ci = 0, then S knows SKi and κi can be computed as
in the description of the protocol. Otherwise, S chooses ri ∈ Zq at random
and computes

κi =
e
(
C3, riP − γi

h(V K)−h(V K∗)(bP )
)

e
(
C1,

−γiη
h(V K)−h(V K∗) (bP ) + ri[(h(V K) − h(V K∗))P1 + ηP ]

) .

It is not difficult to see that this value κi is a correct partial decryption value
for Ri, computed with the implicit random value r̃i = ri − bγi

h(V K)−h(V K∗) .

When all the values κi are computed, S can recover κ and the plaintext
m = C2 · κ. The solver S sends m and {κi}Ri∈P to A.

At some point, A broadcasts a set P = {R1, . . . , Rn}, a threshold t such that
1 ≤ t ≤ n, and two messages m0, m1 ∈ G2, such that the number of corrupted
users in P is less than t. This means that at least one user Ru ∈ P has not been
corrupted by A. With probability 1 − μ, we have cu = 1 and so PKu = γu(bP ).
In general, we define P0 = {Ri ∈ P : ci = 0} and P1 = {R� ∈ P : c� = 1}. As
we have just said, P1 is not empty with probability at least 1 − μ. If this is not
the case, S aborts and outputs a random bit d ∈ {0, 1}.

For the challenge ciphertext to be given to A, the solver S defines C1 = cP
(note that c is unknown to S) and takes V K∗ for the verification key. Note
that, because of the way in which Q is defined, we have C3 = ηC1. To compute
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C2, the value e(P1, P2)c must be multiplied with the plaintext. If we define
P2 =

∑
Ri∈P

λP
i0PKi, and recalling that P1 = aP , we have

e(P1, P2)c = e
(
aP,

∑
Ri∈P0

λP
i0γiP

)c · e
(
aP,

∑
R�∈P1

λP
�0γ�(bP )

)c =

= e(aP, cP )

∑
Ri∈P0

λP
i0γi

· e(P, P )
abc

∑
R�∈P1

λP
�0γ�

.

S chooses a set P̃ of n − t dummy users such that P ∩ P̃ = ∅. Analogously,
defining ˜PKj =

∑
Ri∈P

λP
ijPKi for these users, we have

e( ˜PKj , cP1) = e(cP, aP )

∑
Ri∈P0

λP
ijγi

· e(P, P )
abc

∑
R�∈P1

λP
�jγ�

.

S chooses a random bit β ∈ {0, 1} and defines

C2 = mβ ·
(

e(aP, cP )

∑
Ri∈P0

λP
i0γi

· T

∑
R�∈P1

λP
�0γ�

)
.

And, for every dummy user Rj ∈ P̃, S chooses rj ∈ Zq at random and defines

κj =
e(C3, rjP )

e(cP, aP )

∑
Ri∈P0

λP
ijγi

· T

∑
R�∈P1

λP
�jγ�

· e(C1, rj [h(V K∗)P1 + Q])
.

Note that the resulting C′∗ = (P , t, P̃, C1, C2, C3, {κj}Rj∈P̃) is consistent if
and only if T = e(P, P )abc. After that, S runs Σ.Sign(SK∗, C′∗) → σ∗. The final
challenge ciphertext that is sent to A is C∗ = (V K∗, C′∗, σ∗).

At this point, A is allowed to make new decryption queries, which are replied
by S exactly in the same way as before. After that, A outputs its guess β′. If
β′ = β, then S outputs d = 1 (meaning that it believes that T = e(P, P )abc and
so D ∈ DBDH). If β′ �= β, then S outputs d = 0 (meaning that it believes that
T is a random value in G2 and so D ∈ Drand).

Let us compute the success probability of S. We assume that in the input of
the DBDH problem, D ∈ DBDH with probability 1/2. Let us denote as ρ the
probability that S does not abort in any phase. We have

Pr[S succeeds]=
1
2
Pr[S succeeds / D ∈ DBDH ]+

1
2

Pr[S succeeds / D ∈ Drand] ≥

≥ 1
2

[
Pr[S does not abort] · (1

2
+ ε) + Pr[S aborts] · 1

2

]
+

1
2

· 1
2

≥

≥ 1
4
ρ +

1
2
ρε +

1
4
(1 − ρ) +

1
4

=
1
2

+
ρε

2
.

Let us denote as δ the probability that A makes a decryption query for a valid
ciphertext C = (V K∗, C′, σ) such that (C′, σ) �= (C′∗, σ∗).
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Lemma 1. δ ≤ εΣ.

Proof. We are going to prove that a CCA2 attacker A which makes a valid query
C = (V K∗, C′, σ) to the decryption oracle, such that (C′, σ) �= (C′∗, σ∗), with
probability δ, can be used to construct a forger F against the one-time signature
scheme Σ, with success probability δ.

When F receives V K∗ as input, he generates params and initializes A. Each
time A asks for the creation of a new user Ri, the forger F generates the secret
key and public key (SKi, PKi) for Ri. Later, F can answer all the corruption
and decryption queries made by A, because F knows all the secret keys. For the
challenge ciphertext, F chooses V K∗ as the verification key, and uses his only
query to his signing oracle to obtain Σ.Sign(SK∗, C′∗) → σ∗.

If at some point A makes a decryption query for a valid ciphertext C =
(V K∗, C′, σ) verifying (C′, σ) �= (C′∗, σ∗), then F aborts and outputs (C′, σ) as
his valid forgery. ��

The probability that S does not abort at any point is ρ ≥ μqc(1−μ)(1−δ). This
value is maximized when μ = qc

qc+1 , which leads to

ρ ≥
(

1
1 + 1

qc

)qc

· 1
qc + 1

· (1 − δ) ≥ 1
e

· 1 − δ

qc + 1
.

Therefore, the advantage of S in solving the DBDH problem is

ε′ ≥ ρε

2
≥ ε(1 − δ)

2(qc + 1)e
≥ ε(1 − δ)

6(qc + 1)
≥ ε(1 − εΣ)

6(qc + 1)
. ��

5 The Identity-Based Case

The generic transformation of Canetti, Halevi and Katz [11], that we have used
as building tool for the construction of our TBE scheme in the previous section,
works also to obtain CCA2 secure identity-based cryptosystem from a 2-level
hierarchical identity-based cryptosystem with chosen plaintext selective-ID se-
curity. Therefore, we should in principle be able to construct an identity-based
TBE scheme with maximum security in the standard model, by starting from
the 2-level hierarchical scheme in [5]. However, this particular scheme does not
seem to properly adapt to the scenario of threshold broadcast encryption.

Nevertheless, it is possible to construct a secure identity-based TBE scheme
by following the same idea, but applied to a different scheme. Intuitively, what
we need is the Boneh-Franklin identity-based scheme [8] for the first level of
identities (i.e. the identities of the receivers) and the Boneh-Boyen identity-based
scheme [5] for the second level of identities (corresponding to the verification key
V K). A consequence of using the Boneh-Franklin scheme is that our scheme will
achieve provable CCA2 security in the random oracle model.

Actually, our proposal of identity-based TBE scheme, which results from ap-
plying this combination, is very similar to the PKI scheme described and analyzed
in Section 4. For this reason, we only sketch the main differences between them:
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– The Setup phase is now run by the master entity. It is the same as in the PKI
scheme, but now the element P1 is computed as P1 = γP for some random
γ ∈ Zq that the master entity keeps secret. An additional hash function
H : {0, 1}∗ → G1 is chosen and made public.

– The Key Generation phase of the PKI scheme is replaced with a Key Ex-
traction protocol, run by the master entity each time a user with identity
IDi asks for his secret key. The public key of IDi is easily (and pub-
licly) computable as PKi = H(IDi), whereas the corresponding secret
key SKi = γPKi is computed and delivered by the master entity. Note
that in both (PKI and identity-based) schemes the tuples (P, P1, PKi, SKi)
are Diffie-Hellman tuples. In particular, in the identity-based scheme, a
user can verify that the obtained secret key is consistent, by checking if
e(P, SKi) = e(P1, PKi).

– In the security proof, the part of the proof of Theorem 1 where the pairs of
keys (PKi, SKi) are generated is now the part of the proof where the solver
S answers the queries that the attacker A makes to the random oracle for
H . But the result is the same: for some users (ci = 0) the solver S will define
H(IDi) = PKi = γiP and so S will know the corresponding SKi, whereas
for other users (ci = 1) the solver S will define H(IDi) = PKi = γi(bP ).

As a result, we obtain an identity-based TBE scheme which is CCA2 secure
in the random oracle model, under the Decisional Bilinear Diffie-Hellman As-
sumption.

6 Conclusion

Threshold broadcast encryption (TBE) schemes differ from traditional threshold
public key encryption schemes [21,10,6] because the group of receivers and the
threshold for decryption are not decided from the beginning, but chosen (ad-hoc)
by the entity who encrypts each message. This difference makes TBE schemes
more suitable for some applications in real life.

In this work we have designed TBE schemes with shorter ciphertexts than pre-
vious proposals, for both PKI-based and identity-based scenarios. The schemes
achieve the highest possible level of security (against chosen-ciphertext attacks)
assuming that the Decisional Bilinear Diffie-Hellman problem is hard.

Many problems remain open in this area. For example, to design TBE schemes
with ciphertexts’ length shorter than O(n) (for PKI or identity-based scenar-
ios) which do not employ bilinear pairings; or to design an identity-based TBE
scheme, also with ciphertexts’ length shorter than O(n), which achieves the
maximum security in the standard model. Another interesting question to be
answered is whether the bound n − t + O(1) for the ciphertexts’ length can
be lowered, for fully secure TBE schemes. It is not clear, for example, whether
some of the proposed techniques to shorten the ciphertexts’ length in standard
broadcast encryption schemes [9,13,18] can be extended to our threshold setting.
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14. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: Ad-hoc threshold broadcast encryp-
tion with shorter ciphertexts. In: Proceedings of WCAN 2007 (to be published by
Electronic Notes in Theoretical Computer Science) (2007)

15. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

16. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Dynamic threshold cryptosystems: a
new scheme in group oriented cryptography. In: Proceedings of Pragocrypt 1996,
CTU Publishing house, pp. 370–379 (1996)

17. Lim, C.H., Lee, P.J.: Directed signatures and application to threshold cryptosys-
tems. In: Lomas, M. (ed.) Security Protocols. LNCS, vol. 1189, pp. 131–138.
Springer, Heidelberg (1997)

18. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. IACR ePrint (2007),
available at http://eprint.iacr.org/2007/217

19. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology 15(2), 75–96 (2002)

http://eprint.iacr.org/2007/217


Construction of a Hybrid HIBE Protocol Secure

Against Adaptive Attacks

(Without Random Oracle)

Palash Sarkar and Sanjit Chatterjee

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108
{palash,sanjit t}@isical.ac.in

Abstract. We describe a hybrid hierarchical identity based encryption
(HIBE) protocol which is secure in the full model without using the ran-
dom oracle heuristic and whose security is based on the computational
hardness of the decisional bilinear Diffie-Hellman (DBDH) problem. The
new protocol is obtained by augmenting a previous construction of a
HIBE protocol which is secure against chosen plaintext attacks (CPA-
secure). The technique for answering decryption queries in the proof is
based on earlier work by Boyen-Mei-Waters. Ciphertext validity testing
is done indirectly through a symmetric authentication algorithm in a
manner similar to the Kurosawa-Desmedt public key encryption proto-
col. Additionally, we perform symmetric encryption and authentication
by a single authenticated encryption algorithm. A net result of all these
is that our construction improves upon previously known constructions
in the same setting.

1 Introduction

Identity based encryption [29,8] is a kind of public key encryption where the
public key can be the identity of the receiver. The secret key corresponding to
the identity is generated by a private key generator (PKG) and is securely pro-
vided to the relevant user. The notion of IBE simplifies the issues of certificate
management in public key infrastructure. The PKG issues the private key as-
sociated with an identity. The notion of hierarchical IBE (HIBE) [21,19] was
introduced to reduce the workload of the PKG. The identity of any entity in a
HIBE structure is a tuple (v1, . . . , vj). The private key corresponding to such an
identity can be generated by the entity whose identity is (v1, . . . , vj−1) and which
possesses the private key corresponding to this identity. The security model for
IBE was extended to that of HIBE in [21,19].

The first construction of an IBE which can be proved to be secure in the full
model without the random oracle heuristic was given by Boneh and Boyen in [5].
Later, Waters [31] presented an efficient construction of an IBE which is secure in

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 51–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the same setting. An extension of Waters’ construction has been independently
described in [13] and [26]. This leads to a controllable trade-off between the size
of the public parameters and the efficiency of the protocol (see [13] for details).

A construction of a HIBE secure in the full model without using the random
oracle heuristic was suggested in [31]. A recent work [14], describes a HIBE which
builds on [31] by reducing the number of public parameters. The constructed
HIBE is secure against chosen plaintext attacks (CPA-secure).

The Problem. We consider the problem of constructing a HIBE under the
following conditions.

– Security is in the full model [8], i.e., the adversary can mount an adaptive
chosen ciphertext attack and can choose the challenge identity adaptively.

– The reduction is from the decisional bilinear Diffie-Hellman problem.
– The security proof does not use the random oracle heuristic.

1.1 Our Contributions

We describe a hybrid HIBE protocol for the above setting. The new construction
is obtained by augmenting the construction in [14]. The idea for this augmenta-
tion is based on the technique of [9] and algebraic ideas from the construction of
IBE given in [4]. In addition, we make use of two new things. First, we incorpo-
rate information about the length of the identity into the ciphertext. Second, we
use symmetric key authentication to verify ciphertext well formedness. We also
show that the two tasks of symmetric key encryption and authentication can be
combined by using an authenticated encryption (AE) protocol.

The idea of using symmetric authentication technique to verify the well formed-
ness of the ciphertext is based on the PKE protocol due to Kurosawa-Desmedt
(KD) [25]. To the best of our knowledge, this technique has not been earlier ap-
plied to the (H)IBE setting.

We can specialize the HIBE protocol described in this paper to obtain a PKE
and an IBE. With some natural simplifications, the PKE turns out to be the
key encapsulation mechanism (KEM) proposed by BMW [9] composed with a
one-time secure data encapsulation mechanism (DEM). On the other hand, the
IBE is different from previous work. Kiltz-Galindo [24] had proposed an IB-
KEM. Composed with a suitable symmetric encryption algorithm, this provides
an IBE. The decryption algorithm of our IBE is faster than the IBE obtained
from the KEM given in [24].

Our construction has a security degradation of approximately qh (where q is the
number of queries and h is the number of levels). This is better than a degradation
of qh+1 which is what one would obtain by a straightforward application of the
known techniques. Another advantage is that by instantiating the AE protocol
with a single pass algorithm [27,22,20,12], it is possible to obtain a speed-up by
a factor of two for both encryption and decryption of the symmetric part of the
hybrid encryption. Also, by using the authentication aspect of the AE protocol for
verifying the well formedness of the ciphertext we can avoid a number of pairing
based verifications. This leads to a faster decryption algorithm.
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We make a few remarks on the proof. Since the new protocol is obtained by
augmenting the protocol in [14], the proof of the new protocol is also obtained
by augmenting the proof in [14] (which is actually based on the construction and
proof in [31]). We do not repeat the aspects of the proof that already appear
in [14]. Incorporating the length of the identity in the ciphertext is required to
avoid certain attacks as we discuss later. Verifying ciphertext well formedness
using symmetric authentication requires us to adapt the proof technique (espe-
cially the method of deferred analysis) of [1] to the identity based setting. The
combination of different techniques introduces several subtleties in the proof.

1.2 Related Work

The construction in [19] is based on the random oracle assumption and does not
constitute a solution to the problem considered in this paper. A generic tech-
nique [11,7] is known which converts an (h+1)-level CPA-secure HIBE protocol
into an h-level CCA-secure HIBE protocol while preserving the other features
(security model, with/without random oracle, hardness assumption) of the orig-
inal CPA-secure protocol. This technique is based on one-time signatures and
requires prepending each identity component by a bit. Applying this technique
directly to the protocol in [14] does not provide a protocol which is more efficient
than the protocol we describe in this paper.

The BMW paper [9] provided a method of constructing a PKE from an IBE.
They also mentioned that the technique can be used for constructing (H)IBE.
Later work by Kiltz-Galindo [24] built on the BMW paper and described an
efficient CCA-secure IB-KEM. The KG paper suggested a method for extending
their IB-KEM to a HIB-KEM. Details were provided in [3]. Our work also uses
the BMW technique, but introduces several other ideas to obtain a more efficient
(H)IBE compared to previous work.

In an interesting paper, Boneh-Boyen-Goh [6] have shown how to construct
a constant size ciphertext (H)IBE based on the weak decisional bilinear Diffie-
Hellman exponent problem which is a variant of the DBDH problem. Their
protocol is CPA-secure in the selective-ID model. Using the technique of Wa-
ters, this protocol can be made CPA-secure in the full model. Further, using the
techniques of Boyen-Mei-Waters this can be converted into a CCA-secure pro-
tocol. For details of this conversion and also for a protocol secure in a different
model see [15]. The work [23] also considers the same problem.

The main difference between the current work and that of [15,23] is that the
hardness assumptions are different. This makes a direct comparison difficult. We,
however, note that the ciphertext expansion in the later is constant while in the
former it increases linearly with the number of components in the identity. This is
due to the fact that the assumption used in [15,23] is tailored to ensure constant
size ciphertext. On the other hand, the number of public parameters in the
current construction is significantly less than the number of public parameters
in [15,23]. This is due to the fact that the current protocol is built using the
protocol in [14] which significantly reduces the number of public parameters.
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On Security Degradation of HIBE Protocols. All known HIBE protocols
which are secure against adaptive-ID attacks have a security degradation which
is exponential in the depth of the HIBE. This is true, even if the random oracle
heuristic is used in the security proof. In view of this, all such protocols can be
considered to have a valid security bound only for a small number of levels. Cur-
rently, the most important open problem in the construction of HIBE protocols
is to avoid (or reduce) this exponential security decay.

2 Preliminaries

2.1 HIBE Protocol

Following [21,19], a hierarchical identity based encryption (HIBE) scheme is
specified by four algorithms: Setup, KeyGen, Encrypt and Decrypt. For a HIBE
of height h (henceforth denoted as h-HIBE) any identity v is a tuple (v1, . . . , vj)
where 1 ≤ j ≤ h.

– HIBE.Setup: Takes as input a security parameter and outputs (pk, sk), where
pk is the public parameter of the PKG and sk is the master secret of the
PKG. It also defines the domains of identities, messages and ciphertexts.

– HIBE.KeyGen(v, dv|j−1 , pk): Takes as input a j-level identity v, the secret
dv|j−1 corresponding to its (j − 1)-level prefix and pk and returns as output
dv, the secret key corresponding to v. In case j = 1, dv|j−1 is equal to sk, the
master secret of the PKG.

– HIBE.Encrypt(v, M, pk): Takes as input v, the message M and pk, and returns
C, the ciphertext obtained by encrypting M under v and pk.

– HIBE.Decrypt(v, dv, C, pk): Takes as input v, the secret key dv corresponding
to v, a ciphertext C and pk. Returns either bad or M , the message which is
the decryption of C.

As usual, for soundness, we require that HIBE.Decrypt(v, dv, C, pk) = M must
hold for all v, dv, C, pk, sk and M associated by the above four algorithms.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversary A is allowed to query
two oracles – a decryption oracle and a key-extraction oracle. At the initiation,
it is provided with the public parameters of the PKG. The game has two query
phases with a challenge phase in between.

Query Phase1. Adversary A makes a finite number of queries where each query
is addressed either to the decryption oracle or to the key-extraction oracle. In
a query to the decryption oracle it provides a ciphertext as well as the identity
under which it wants the decryption. It gets back the corresponding message or
bad if the ciphertext is invalid. Similarly, in a query to the key-extraction oracle,
it asks for the private key of the identity it provides and gets back this private
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key. Further, A is allowed to make these queries adaptively, i.e., any query may
depend on the previous queries as well as their answers. The adversary is not
allowed to make any useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to ask for the decryp-
tion of a message under an identity if it has already obtained a private key
corresponding to the identity.

Challenge. At this stage, A outputs an identity v∗ = (v∗1 , . . . , v∗j ) for 1 ≤ j ≤ h,
and a pair of messages M0 and M1. There is the natural restriction on the
adversary, that it cannot query the key extraction oracle on v∗ or any of its
proper prefixes in either of the phases 1 or 2. A random bit δ is chosen and the
adversary is provided with C∗ which is an encryption of Mδ under v∗.

Query Phase2. A now issues additional queries just like Phase 1, with the (ob-
vious) restrictions that it cannot ask the decryption oracle for the decryption of
C∗ under v∗, nor the key-extraction oracle for the private key of v∗ or any of its
prefixes.

Guess. A outputs a guess δ′ of δ.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(δ = δ′)] − 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making at
most qC queries to the decryption oracle and at most qID queries to the key-
extraction oracle. A HIBE protocol is said to be (ε, t, qID, qC)-CCA secure if
AdvHIBE(t, qID, qC) ≤ ε.

In the above game, we can disallow the adversary A from querying the de-
cryption oracle. AdvHIBE(t, q) in this context denotes the maximum advantage
where the maximum is taken over all adversaries running in time at most t and
making at most q queries to the key-extraction oracle. A HIBE protocol is said
to be (t, q, ε)-CPA secure if AdvHIBE(t, q) ≤ ε.

2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉,
where we write G1 additively and G2 multiplicatively. A mapping e : G1 ×G1 →
G2 is called a cryptographic bilinear map if it satisfies the following properties.

– Bilinearity : e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability : There exists an efficient algorithm to compute e(P, Q) for

all P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. The modified Weil pairing [8] and Tate pairing [2,18] are examples of cryp-
tographic bilinear maps.
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Known examples of e() have G1 to be a group of Elliptic Curve (EC) points
and G2 to be a subgroup of a multiplicative group of a finite field. Hence, in
papers on pairing implementations [2,18], it is customary to write G1 additively
and G2 multiplicatively. On the other hand, some “pure” protocol papers such
as [5,31] write both G1 and G2 multiplicatively though this is not true of the
initial protocol papers [8,19]. Here we follow the first convention as it is closer
to the known examples.

2.4 Hardness Assumption

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [8] is as
follows: Given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z =
e(P, P )abc (which we denote as Z is real) or Z is random. The advantage of a
probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 and
outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]| (1)

where the probability is calculated over the random choices of a, b, c ∈ ZZp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries B running in time
at most t. By the (ε, t)-DBDH assumption we mean AdvDBDH(t) ≤ ε.

2.5 Components (AE, KDF, UOWHF)

We briefly introduce and state the security notions for AE, KDF and UOWHF.
An AE protocol consists of two deterministic algorithms – Encrypt and De-

crypt. Both of these use a common secret key k. The Encryptk algorithm takes as
input a nonce IV and a message M and returns (C, tag), where C is the cipher-
text corresponding to M (and is usually of the same length as M). The Decryptk
algorithm takes as input IV and a pair (C, tag) and returns either the message
M or ⊥ (indicating invalid ciphertext).

An AE algorithm possesses two security properties – privacy and authenticity.
For privacy, the adversarial game is the following. The adversary A is given access
to an oracle which is either the encryption oracle instantiated with a random
key k or is an oracle which simply returns random strings of length equal to its
input. After interacting with the oracle the adversary ultimately outputs a bit.
The advantage of A is defined to be

|Prob[A = 1|real oracle] − Prob[A = 1|random oracle]|.

In the above game, the adversary is assumed to be nonce-respecting, in that it
does not repeat a nonce. The requirement that IV is a nonce can be replaced by
the requirement that IV is chosen randomly. This leads to an additive quadratic
degradation in the advantage.
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The security notion defined above is that of pseudorandom permutation. This
provides the privacy of an AE protocol. In particular, it implies the following
notion of one-time security. The adversary submits two equal length messages
M0 and M1. A random (IV∗, k∗) pair is chosen and a random bit δ is chosen.
The adversary is given (C∗, tag∗) which is the encryption of Mδ using IV∗ and
k∗. The adversary then outputs δ′ and its advantage is∣∣∣∣Prob[δ = δ′] − 1

2

∣∣∣∣ .
We say that an AE protocol satisfies (ε, t) one-time encryption security if the
maximum advantage of any adversary running in time t in the above game is ε.

The authenticity property of an AE protocol is defined through the following
game. A nonce respecting adversary A is given access to an encryption oracle
instantiated by a secret key k. It submits messages to the oracle and receives
as output ciphertext-tag pairs. Finally, it outputs a “new” ciphertext-tag pair
and a nonce, which can be equal to a previous nonce. The advantage of A in
this game is the probability that the forgery is valid, i.e., it will be accepted as
a valid ciphertext.

As before, we can replace the requirement that IV be a nonce by the require-
ment that IV is random without significant loss of security. By an (ε, t)-secure
authentication of an AE protocol we mean that the maximum advantage of any
adversary running in time t in the above game is ε.

A KDF is a function KDF() which takes an input K and produces (IV, dk)
as output. The security notion for KDF is the following. For a randomly chosen
K, the adversary has to distinguish between KDF(K) from a randomly chosen
(IV, dk).

A function family {Hk}k∈K is said to be a universal one-way hash family if the
following adversarial task is difficult. The adversary outputs an x; is then given
a randomly chosen k ∈ K and has to find x′ �= x such that Hk(x) = Hk(x′). We
say that the family is (ε, t)-secure if the maximum advantage (probability) of an
adversary running in time t and winning the above game is ε.

3 CCA-Secure HIBE Protocol

In this section, we modify the CPA-secure HIBE protocol in [14] to obtain a
CCA-secure HIBE protocol. We provide an explicit hybrid protocol. This allows
us to improve the decryption efficiency as we explain later. The modification
consists of certain additions to the set-up procedure as well as modifications of
the encryption and the decryption algorithms. No changes are required in the
key generation algorithm.

The additions are based on the technique used by Boyen-Mei-Waters [9] and
are also based on the IBE construction by Boneh-Boyen [4] (BB-IBE). Some
new ideas – incorporating length of the identity into the ciphertext and using
symmetric key authentication to verify ciphertext well formedness – are intro-
duced. Also, an AE protocol is used to combine the two tasks of symmetric key
encryption and authentication.
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A Useful Notation. Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string
(where l divides n) and is considered to be an element of ZZ2n/l . For 1 ≤ k ≤ h
we define,

Vk(v) = U ′
k +

l∑
i=1

viUi. (2)

The modularity introduced by this notation allows an easier understanding of
the protocol, since one does not need to bother about the exact value of l. When
v is clear from the context, we will write Vk instead of Vk(v).

Cost of Computing Vk(v). This consists of computing the individual viUis and
then summing the l points. Each vi is a bit string of length n/l. Consequently,
the time for computing Vk(v) is approximately equal to the time for computing
a scalar multiplication of the form mP , where m is an n-bit string and P is a
point on the curve.

In the protocol, we will be dealing with identities of the form v = (v1, . . . , vj)
with j ∈ {1, . . . , h}, vk = (v(k)

1 , . . . , v
(k)
l ) and v

(k)
i is an (n/l)-bit string. In this

context, Vk(vk) is obtained by replacing vk for v in (2).

3.1 Construction

The description of the construction is given in Figure 1 and the approximate
costs of the different algorithms are given in Table 1. In these costs we do include
symmetric encryption or authentication.

The following things should be noted while going through Figure 1.

1. Maximum depth of the HIBE is h.
2. Identities are of the form v = (v1, . . . , vj), j ∈ {1, . . . , h}, vk = (v(k)

1 , . . . , v
(k)
l )

and v
(k)
i is an (n/l)-bit string.

3. 〈G1, G2, e〉 is as defined in Section 2.3.
4. The notation Vk() is given in (2).
5. The standard way to avoid the computation of e(P1, P2) in HIBE.Encrypt is

to replace P2 with e(P1, P2) in the public parameters.
6. Key generation is essentially the same as in [31,14].

The bold portions of Figure 1 provide the additional points required over the
CPA-secure HIBE construction from [14]. We provide some intuition of how
decryption queries are answered. (Key extraction can be answered using the
technique from [14] which is built on the work of Waters [31].) First, let us
consider what happens if we attempt to simulate decryption queries by key
extraction queries. The idea is that we use a key extraction query to derive the
private key of the identity which is provided as part of the decryption query.
Then this private key is used to decrypt the ciphertext. This idea works fine
except for the situation where a decryption query is made on a prefix of the
challenge identity. Since, it is not allowed to query the key extraction oracle on
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HIBE.SetUp

1. Choose α randomly from ZZp.
2. Set P1 = αP .
3. Choose P2, U

′
1, . . . , U

′
h, U1, . . . , Ul randomly from G1.

4. Choose W randomly from G1.
5. Let Hs : {1, . . . ,h} × G1 → ZZp be chosen from a UOWHF

and made public.
6. Public parameters:

P, P1, P2, U
′
1, . . . , U

′
h, U1, . . . , Ul and W.

7. Master secret key: αP2.

HIBE.KeyGen: Identity v = (v1, . . . , vj).

1. Choose r1, . . . , rj randomly from ZZp.

2. d0 = αP2 +
∑j

k=1 rkVk(vk).
3. dk = rkP for k = 1, . . . , j.
4. Output dv = (d0, d1, . . . , dj).

(Key delegation, i.e., generating dv from
dv|j−1 can be done in the standard manner as

shown in [31,14].)

HIBE.Encrypt: Identity v = (v1, . . . , vj); message M .

1. Choose t randomly from ZZp.
2. C1 = tP , B1 = tV1(v1), . . . , Bj = tVj(vj).
3. K = e(P1, P2)

t.
4. (IV, dk) = KDF(K).
5. (cpr, tag) = AE.Encryptdk(IV, M).
6. γ = Hs(j,C1); Wγ = W + γP1; C2 = tWγ .
7. Output (C1,C2, B1, . . . , Bj , cpr, tag).

HIBE.Decrypt: Identity v = (v1, . . . , vj);

ciphertext (C1,C2, B1, . . . , Bj , cpr, tag);
decryption key dv = (d0, d1, . . . , dj).

1. γ = Hs(j,C1); Wγ = W + γP1.
2. If e(C1,Wγ) �= e(P,C2) return ⊥.

3. K = e(d0, C1)/
∏j

k=1 e(Bk, dk).
4. (IV, dk) = KDF(K).
5. M = AE.Decryptdk(IV, C, tag).

(This may abort and return ⊥).
6. Output M .

Fig. 1. CCA-secure HIBE
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Table 1. Cost of different operations. The variable j refers to the number of compo-
nents in the input identity tuple. Here 1 ≤ j ≤ h, where h is the maximum depth of
the HIBE. Cost of symmetric key operations are not shown. [SM]: cost of one scalar
multiplication in G1; [P]: cost of one pairing operation; [VP]: cost of one pairing ver-
ification of the type e(Q1, Q2) = e(R1, R2); [e]: cost of one exponentiation in G2; [i]:
cost of inversion in G2.

No. of public parameters (3 + h + l) elements of G1 and one element of G2

Secret key size j + 1 elements of G1

Cost of key generation 3j[SM]

Cost of encryption (2j + 3)[SM]+1[e]

Cost of decryption 1[SM]+1[VP]+(j + 1)[P]+1[i]

prefixes of the challenge identity, the above simulation technique will not work.
We need an additional mechanism to answer such decryption queries.

The mechanism that we have used is primarily based on the BMW technique.
The parameter W along with P and P1 define an instance of a BB-IBE proto-
col. During encryption, an “identity” γ = Hs(j, C1) for this protocol is generated
from the randomizer C1 = tP and the length j of the identity tuple. Using this
identity, a separate encapsulation of the key e(P1, P2)t is made. This encapsula-
tion consists of the element C2 (and C1). In the security proof, if a decryption
query is made on the challenge identity, then this encapsulation is used to obtain
the private key of γ and answer the decryption query.

The use of the function H() is different from its use in [9]. In [9], the function
H() maps G1 to ZZp. On the other hand, in the HIBE protocol in Figure 1, H()
maps {1, . . . , h}×G1 to ZZp. Our aim is to include information about the length
of the identity into the output of H(). Without this information, an encryption
for a (j + 1)-level identity can be converted to an encryption for its j-level
prefix by simply dropping the term corresponding to the last component in the
identity. (This was pointed out by a reviewer of an earlier version of this work,
who, however, did not provide the solution described here.)

The other aspect is that of checking for the well formedness of the ciphertext.
A well formed ciphertext requires verifying that C1 = tP , C2 = tWγ and B1 =
tV1(v1), . . . , Bj = tVj(vj). In other words, we need to verify the following.

logP C1 = logWγ
C2 and logP C1 = logV1(v1) B1 = · · · = logVj(vj) Bj .

In Figure 1, the first equality is explicitly verified, whereas the second equality
is not. The idea is that if the second equality does not hold, then the key K
that will be reconstructed will be improper and indistinguishable from random
(to the adversary). Correspondingly, the quantities (IV, dk) will also be indis-
tinguishable from random and symmetric authentication with this pair will fail
(otherwise the adversary has broken the authentication of the AE protocol).
Thus, instead of using j pairings for verifying the second equality, we use sym-
metric authentication to reject invalid ciphertext. This leads to a more efficient
decryption algorithm. Note that the use of hybrid encryption is very crucial in
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the current context. This is similar to the Kurosawa-Desmedt PKE, which pro-
vides improved efficiency over the Cramer-Shoup protocol for hybrid encryption.

The additional requirements of group elements and operations for attaining
CCA-security compared to the protocol in [14] consists of the following.

1. One extra group element in the public parameters.
2. Two additional scalar multiplications during encryption.
3. One additional scalar multiplication and one pairing based verification

during decryption.

3.2 Security Statement

The security statement for the new protocol is given below.

Theorem 1. The HIBE protocol described in Figure 1 is (εhibe, t, qID, qC)-CCA
secure assuming that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉; Hs

is an (εuowhf , t)-UOWHF; KDF is (εkdf , t)-secure; and the AE protocol possesses
(εauth, t)-authorization security and (εenc, t) one-time encryption security; where

εhibe ≤ 2εuowhf +
εdbdh

λ
+ 4εkdf + 2εenc + 2hqCεauth. (3)

where t′ = t + O(τq) + χ(εhibe) and

χ(ε) = O(τq + O(ε−2 ln(ε−1)λ−1 ln(λ−1)));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2h(2σ(μl + 1))h) with μl = l(2n/l − 1), σ = max(2q, 2n/l) and
q = qID + qC .

We further assume 2σ(1 + μl) < p.

The proof can be found in the expanded version of this paper [28]. The statement
of Theorem 1 is almost the same as that of Theorem 1 in [14] with the following
differences.

1. The above theorem states CCA-security where as [14] proves CPA-security.
2. The value of λ is equal to 1/(2h(2σ(μl+1))h) in the above statement where as

it is equal to 1/(2(2σ(μl+1))h) in [14], i.e., there is an additional degradation
by a factor of h.

3. The value of q in the expression for σ is the sum of qID and qC whereas in [14]
it is only qID. The reason for having qC as part of q is that it may be required
to simulate decryption queries using key extraction queries.

For 2q ≥ 2n/l (typically l would be chosen to ensure this), we have

εhibe ≤ 2εuowhf + 2h(4lq2n/l)hεdbdh + 4εkdf + 2εenc + 2hqCεauth.

The corresponding bound on εdbdh in [14] is 2(4lqID2n/l)hεdbdh. Thus, we get an
additional security degradation of εdbdh by a factor of h while attaining CCA-
security. Since h is the maximum number of levels in the HIBE, its value is small
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and the degradation is not significant. Also, q in the present case includes both
key extraction and decryption queries.

The statement of Theorem 1 is a little complicated. The complexity is in-
herited from the corresponding security statement in [14]. These arise from the
requirement of tackling key extraction queries and providing challenge cipher-
texts. In particular, λ is a lower bound on the probability of not abort by the
simulator and O(ε−2 ln(ε−1)λ−1 ln(λ−1)) is the extra runtime introduced due to
the artificial abort requirement. In [14], the security degradation is worked out
in more details and much of these also hold for Theorem 1. Hence, we do not
repeat the analysis in this paper.

The technique for showing security against chosen plaintext attacks is taken
from [14] and is based on the works of Waters [31] and Boneh-Boyen [4]. Since
these details are already given in [14], we do not repeat them in the proof of Theo-
rem 1. The proof technique for answering decryption queries is based on the work
of Boyen-Mei-Waters [9]. Also relevant is the work of Kiltz-Galindo [24]. The ba-
sic idea of using symmetric authentication to verify ciphertext well formedness
is taken from the paper by Kurosawa-Desmedt [25]. A proof of the KD protocol
using the so called method of “deferred analysis” is given in [1]. This proof is in
the PKE setting which we had to adapt to fit the (H)IBE framework.

4 Comparison to Previous Work

The construction in Figure 1 can be specialized to obtain CCA-secure PKE and
IBE as special cases. We show that when specialized to PKE, the protocol in
Figure 1 simplifies to yield the BMW construction. On the other hand, when
specialized to IBE, we obtain a more efficient (actually the decryption algo-
rithm is more efficient) IBE protocol compared to the previously best known
construction of Kiltz-Galindo [24].

Public Key Encryption. In this case there are no identities and no PKG. It
is possible to make the following simplifications.

SetUp:
1. The elements U ′

1, . . . , U
′
h, U1, . . . , Ul are no longer required.

2. The UOWHF Hs can be replaced by an injective embedding from G1 to
ZZp.

3. A random w in ZZp is chosen and W is set to be equal to wP .
4. The secret key is set to be equal to (αP2, α, w).
5. The AE protocol can be replaced with a one-time secure data encapsu-

lation mechanism (DEM).
KeyGen: This is not required at all.
Encrypt:

1. The elements B1, . . . , Bj are not required.
2. Encryption with a DEM will not produce a tag.
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Decrypt:
1. The purpose of the pairing verification e(C1, Wγ) = e(P, C2) is to ensure

that C1 = tP and C2 = tWγ , where Wγ = W +γP1. With the knowledge
of w and α, this can be done as follows. Compute w′ = w + γα and
verify whether w′C1 = C2. This requires only one scalar multiplication
as opposed to one pairing verification.

2. The value of K is reconstructed as K = e(C1, αP2).
3. Since the AE protocol is replaced with a DEM, symmetric authentication

will not be done.

With these simplifications, the protocol becomes the BMW protocol.

Identity Based Encryption. In this case h = 1. The protocol in Figure 1
remains unchanged except for one simplification. In a HIBE, the length of the
identity tuple can vary from 1 to h. For an IBE, the length is always one. Hence,
in this case, we can restrict the domain of Hs to be G1. Since, G1 has cardinality
p, the domain and range of Hs are the same and we can also take Hs to be an
injective embedding from G1 to ZZp as has been done in the BMW construction.

Let us now compare the resulting IBE construction with the previous con-
struction of Kiltz-Galindo [24]. In both cases, the public key portion of the
ciphertext is of the form (C1, C2, B1). During decryption, KG protocol verifies
that C1 = tP , C2 = tWγ and B1 = tV1(v1). This requires two pairing based
verifications of the type e(P, C2) = e(C1, Wγ) and e(P, B1) = e(C1, V1(v1)).
The cost of one such verification is less than the cost of two pairing operations.
Recall from Table 1 that by [V P ] we denote the cost of one such verification.
Also, let [P ], [SM ], and [i] respectively denote the costs of one pairing opera-
tion, one scalar multiplication in G1, and one inversion in G2. The total cost of
decryption in the KG protocol with the pairing based verification technique is
1[SM ] + 2[V P ] + 2[P ] + 1[i].

Implicit Rejection. KG [24] suggests a method of implicit rejection. This
provides a KEM which cannot explicitly reject a ciphertext. More precisely, the
notion of KEM used by KG [24] is the following. In the adversarial game, the
adversary queries the decryption oracle. If the query is valid, then the adversary
gets the corresponding secret key, while if the query is invalid, then the adversary
gets a random value for the secret key. In particular, the adversary is not told
whether the decryption failed.

First, we would like to point out that this is a restricted notion of KEM.
The original notion of KEM as conceived by Shoup [30] allows the simulator to
inform the adversary whether the decryption failed. We quote from [30, Page 15,
Lines 5–6] (the bold font appears in the cited reference).

“if the decryption algorithm fails, then this information is given to the
adversary”

In view of this, we consider the notion of KEM used by KG to be restricted-KEM.
Apart from the difference mentioned above, such a restricted-KEM is not really
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sufficient for constructing a complete encryption protocol. When combined with
a one-time secure DEM (as envisaged by Shoup [30] and later used by many
authors), a restricted-KEM provides an encryption protocol which cannot reject
invalid ciphertexts. Clearly, such an encryption protocol is also more restricted
compared to the currently accepted notion. (On the other hand, we do note that
the notion of restricted-KEM may be sufficient for some applications.)

In the identity based setting, KG [24] suggests a method of implicit rejection
leading to a restricted-KEM. The idea is the following. The pairing based ver-
ifications are not done; instead two random elements r1 and r2 are chosen and
K is computed as

e(C1, d0 + r1Wγ + r2V1(v1))
e(B1, d1 + r2P )e(r1P, C2)

.

If the ciphertext is proper, then the proper K is computed, while if the ciphertext
is improper, then a random K is computed. Note that an invalid ciphertext is not
explicitly rejected and combining such a KEM with a one-time secure DEM will
result in a IBE which cannot reject invalid ciphertexts. The cost of decryption
with implicit rejection is 5[SM ] + 3[P ] + 1[i].

In contrast, the cost of verification in our case is 1[SM ] + 1[V P ] + 2[P ] + 1[i].
The costs of decryption using our algorithm and also that of KG algorithm
(for both explicit and implicit rejections) are shown in Table 2. Clearly, the
cost of decryption algorithm given in this work is significantly lower than the
KG protocol with explicit pairing based verification. Compared to the implicit
rejection technique, our cost will be lower when 1[V P ] < 1[P ] + 4[SM ]. Based
on the current status of efficient pairing based algorithms, this seems to be a
reasonable condition.

The reason for obtaining this lower cost is that we do not verify e(P, B1) =
e(C1, V1(v1)) either explicitly or implicitly. In other words, we do not verify
whether logP C1 = logV1(v1) B1. If this does not hold, then an incorrect session
key will be generated and ultimately the authentication of the AE protocol will
fail. In a sense, this is also an implicit verification, but the verification is done
using the symmetric component which reduces the total cost of decryption. Also,
an invalid ciphertext will always be rejected.

In summary, the IBE version of the protocol in Figure 1 is the currently known
most efficient CCA-secure IBE protocol in the full model without the random
oracle heuristic and based on the DBDH assumption.

Hierarchical Identity Based Encryption. Based on the work by BMW [9],
the KG paper [24] sketches a construction of a HIBE. The details are worked
out in [3]. Compared to this approach, there are several advantages of our pro-
tocol. First, the ciphertext verification procedure in this approach requires the
verification of logP C1 = logV1(v1) B1 = · · · = logVj(vj) Bj either explicitly us-
ing pairing based verifications or implicitly (but, without being able to reject
invalid ciphertexts) as suggested by Kiltz-Galindo. On the other hand, our ap-
proach does not require these verifications. If any of these equalities do not hold,
then an improper value of K will be obtained and as a result the authentication
of the AE protocol will fail. This significantly reduces the cost of the decryption
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Table 2. Comparison of decryption algorithms of KG-IBE with our algorithm

Protocol Decryption Cost Reject Invalid Ciphertexts

KG (explicit rej.) 1[SM]+2[VP]+2[P]+1[i] Yes

KG (implicit rej.) 5[SM]+3[P]+1[i] No

This work 1[SM]+1[VP]+2[P]+1[i] Yes

Table 3. Comparison of decryption algorithms of KG-HIBE with our algorithm. The
quantity j below refers to the number of components in the identity tuple. Here 1 ≤
j ≤ h, where h is the maximum depth of the HIBE.

Protocol Decryption Cost Reject Invalid Ciphertexts

KG (explicit rej.) 1[SM]+(j + 1)[VP]+(j + 1)[P]+1[i] Yes

KG (implicit rej.) (2j + 1)[SM]+(j + 2)[P]+1[i] No

This work 1[SM]+1[VP]+(j + 1)[P]+1[i] Yes

algorithm. Second, we use an AE algorithm to perform simultaneous encryption
and authentication which can be twice as fast as separate encryption and au-
thentication. Table 3 shows the costs of decryption algorithms for our method
and that of the KG method with explicit and implicit rejection. As mentioned
earlier, due to the security degradation being exponential in h, the value of j
has to be small, at most around 4. Even for small values of j, the cost of the
new decryption algorithm is smaller than that of the KG-HIBE.

An earlier work [11,7] showed a generic construction for converting an (h+1)-
level CPA-secure HIBE into an h-level CCA-secure HIBE. The construction used
one-time signatures, which make it quite inefficient. It was suggested (without
details) in [11] that a MAC based construction can be used to remove the in-
efficiency of the one-time signature based approach. Also, the efficiency of the
resulting protocol is less than that of Figure 1. A problem with the approach
in [11] is that the identity components of the CCA-secure HIBE are prepended
with a bit to obtain identity components of the underlying CPA-secure HIBE.
This can cause difficulties in implementation. Typically, the n-bit identity will
be obtained by hashing an arbitrary length string such as an email address.
Suppose, n = 160. Hashing gives us a 160-bit identity for the underlying CPA-
secure HIBE. Then the length of the identity string for the CCA-secure HIBE
is 161. This value of length will not align with byte boundaries and will cause
implementation difficulties.

The currently known techniques (both generic and non-generic) for converting
a CPA-secure HIBE protocol to a CCA-secure HIBE protocol, starts with an
(h + 1)-level CPA-secure HIBE and then converts it to an h-level CCA-secure
HIBE. The security degradation thus correspond to the (h + 1)-level HIBE. If
we apply this technique to the protocol in [14], then the security degradation for
the obtained h-level CCA-secure HIBE will be 2(4lq2n/l)h+1. Compared to this,
the security degradation given by Theorem 1 is 2h(4lq2n/l)h. In other words, we
have managed to reduce the exponent from (h + 1) to h and have introduced
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a multiplicative factor of h. From the viewpoint of concrete security analysis,
a typical value of q is 230. Assuming this value of q, we are able to prevent
approximately a 30-bit security degradation compared to previous work.

5 Conclusion

In this paper, we have provided a construction of a hybrid HIBE protocol. The
protocol is secure against adaptive adversaries (making both key extraction and
decryption queries) without using the random oracle hypothesis. Security is re-
duced from the computational hardness of the DBDH problem. To the best of
our knowledge, in this setting, the HIBE protocol described in this paper is the
currently known most efficient construction.
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Abstract. Unforgeability of digital signatures is closely related to the
security of hash functions since hashing messages, such as hash-and-sign
paradigm, is necessary in order to sign (arbitrarily) long messages. Re-
cent successful collision finding attacks against practical hash functions
would indicate that constructing practical collision resistant hash func-
tions is difficult to achieve. Thus, it is worth considering to relax the
requirement of collision resistance for hash functions that is used to hash
messages in signature schemes. Currently, the most efficient strongly un-
forgeable signature scheme in the standard model which is based on the
CDH assumption (in bilinear groups) is the Boneh-Shen-Waters (BSW)
signature proposed in 2006. In their scheme, however, a collision resis-
tant hash function is necessary to prove its security. In this paper, we
construct a signature scheme which has the same properties as the BSW
scheme but does not rely on collision resistant hash functions. Instead,
we use a target collision resistant hash function, which is a strictly weaker
primitive than a collision resistant hash function. Our scheme is, in terms
of the signature size and the computational cost, as efficient as the BSW
scheme.

Keywords: digital signature, strong unforgeability, target collision re-
sistant hash function, standard model.

1 Introduction

Unforgeability of digital signatures is closely related to the security of hash func-
tions. In particular, signature schemes that utilize the hash-and-sign paradigm
[14], where a message of arbitrary length is hashed to fixed length and then
the hashed value is signed, are no more secure if collision resistance of the hash
function is broken. In theory, it is possible to construct an arbitrary-input-length
collision resistant hash function from some concrete assumptions such as the dis-
crete logarithm assumption. In practice, if length of the messages to be signed
is always fixed and short, then a hash function from such theoretical construc-
tion would be possible. However, if the length of messages varies arbitrarily or
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becomes long, hash functions for hashing messages would be, in consideration of
computational efficiency, replaced with practical cryptographic hash functions
such as MD5 or SHA-1 and assumed that such hash functions have collision
resistance. Recent successful results of collision finding attacks against practical
cryptographic hash functions (e.g., an attack against SHA-1 by Wang et al. [26])
show that it would be no longer easy to construct practical collision resistant
hash functions. Thus, if we follow the common practice of using practical hash
functions to achieve unforgeability, it is worth considering to relax the require-
ment of collision resistance for hash functions in signature schemes.

A good substitute for collision resistant hash functions in the hash-and-sign
schemes would be target collision resistant hash functions (TCRHFs). A TCRHF,
firstly introduced by Naor and Yung [21] as a universal one-way hash function and
later renamed by Bellare and Rogaway [4], is a class of keyed hash functions. The
important fact is that a TCRHF is proven to be a strictly weaker primitive (hence,
easier to construct) than a collision resistant hash function by Simon [23].

Even when we allow arbitrary-length messages in signature schemes, if we
use TCRHFs, we also have a general and theoretically secure construction of
signature schemes [21]. Its signing process is: choose a random hash-key, hash
a message with the key, and sign the concatenation of the hash-key and the
hashed value. The signature output from the general construction consists of a
signature output from the underlying signing algorithm and the hash-key (we
call this general construction the TCRHF-based hash-and-sign construction).
A obvious but crucial problem of this general construction, however, is that
the signature size increases by the hash-key size. Solutions for several concrete
schemes were proposed by Mironov [19]. In [19], Mironov constructed modified
versions of DSA, PSS-RSS and Cramer-Shoup [13] signatures. Unforgeability of
the modified DSA and PSS-RSA are proven in the random oracle model, and
the modified Cramer-Shoup signature is proven in the standard model. The sizes
of signatures obtained from the modified schemes are the same as the original
ones for DSA and PSS-RSA, and shorter by a hash-key than the original one
for the Cramer-Shoup scheme. The main idea to obtain the modified schemes
is to reuse randomness generated in a signing algorithm as a hash-key of a
TCRHF. In other words, the randomness plays a double role: used to create
a signature itself and also used as a hash-key of the TCRHF that hashes the
message to be signed. However, this approach is not generically applicable but
scheme-dependent, which means that the ways of reusing randomness and the
ways of proving security of the schemes are different from each other.

Such efforts of improving the efficiency of TCRHF-based signature schemes
could play an important role when we observe another application of digital sig-
natures. Since we need this observation to show the motivation of our work,
we review existing works related to that application, in the following. Typ-
ically, “unforgeability” for signature schemes means existential unforgeability
against adaptive chosen message attacks [15]. And if we introduce a stronger
definition called strong unforgeability [1], we can have interesting applications of
digital signature schemes: constructions of other cryptographic schemes such as
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chosen-ciphertext secure public key encryption schemes [12] and group signa-
tures [2,6]. Currently, the most efficient strongly unforgeable signature scheme
in the standard model based on the computational Diffie-Hellman (CDH) as-
sumption is due to Boneh, Shen, and Waters [9]. Their scheme was constructed
in two steps: first they proposed a transformation which converts unforgeable
signature schemes of a specific type into strongly unforgeable one; the concrete
scheme is then obtained by applying the transformation to the Waters signa-
ture [27], which is currently known as the most efficient unforgeable (but not
strongly) signature based on CDH assumption in bilinear groups and is included
in the specific type. However, in [9], a collision resistant hash function is used
to prove its strong unforgeability (arbitrary-length message signing without ap-
plying hash-and-sign paradigm becomes possible because of it, though). There
are also several general transformations that convert any unforgeable signatures
into strongly unforgeable ones [16,24,25]. However, such general transformations
are, though widely applicable, less efficient than the transformation proposed in
[9] in terms of the signature size and the computational cost.

Our Contribution. In this paper, we propose a strongly unforgeable signature
scheme in the standard model which is based on the CDH assumption in bilin-
ear groups and can sign arbitrary-length messages but does not rely on collision
resistant hash functions whose input length can be arbitrary. As stated above,
there would be several ways to construct a scheme having such properties. (e.g., a
straightforward combination of general transformations [16,24,25] and a TCRHF-
based hash-and-sign construction that is written above to the Waters scheme).
However, our scheme is, in terms of the signature size and the computational cost,
more efficient than such general constructions and yet is as efficient as [9]. Our
construction is similar to [9], but utilizes TCRHFs. In the construction, we use
a technique similar to Mironov [19], that is, a double role of randomness in the
signing algorithm. We first construct a transformation that converts unforgeable
schemes of a certain type, which is related to the type introduced in [9] but more
specific, into strongly unforgeable ones and prove the security of the transforma-
tion. Then we show that the Waters signature scheme is included in the type and
obtain the proposing scheme using the transformation.

2 Preliminaries

In this section, we review the definitions of terms used in this paper.

2.1 Digital Signature

A signature scheme Σ consists of three (probabilistic) algorithms:

KeyGen : A key generation algorithm that takes 1κ (security parameter κ) as
input and outputs a pair of a secret key sk and a public key pk.

Sign: A signing algorithm that takes a secret key sk and a message m ∈ M as
input and outputs a valid signature σ on m (where M is a message space
of Σ).
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Verify: A verification algorithm that takes a public key pk, a message m, and a
signature σ as input and outputs accept if σ is a valid signature on m or
reject otherwise.

2.2 SEUF-CMA Security

Strong existential unforgeability against adaptive chosen message attacks (SEUF-
CMA) [1] is defined using the following SEUF-CMA game between the adversary
and the SEUF-CMA challenger:

Setup. The challenger runs KeyGen and obtains a secret key sk and a public
key pk. It then gives pk to the adversary but keeps sk to itself.

Queries. The adversary issues signature queries m1, m2, . . . , mq (at most q
times). The challenger responds to each query mi by running Sign to gener-
ate a valid signature σi on mi and sends σi to the adversary. The adversary’s
query mi may depend on its previous queries m1, . . . , mi−1 and the replies
σ1, . . . , σi−1.

Output. Finally, the adversary outputs a pair (m̂, σ̂). The adversary wins if
Verify(pk, m̂, σ̂) = accept and (m̂, σ̂) �= (mi, σi) for all i ∈ {1, . . . , q}.

Definition 1. We say that a signature scheme Σ is (t, q, ε)-SEUF-CMA secure
if no adversary running in time less than t and making at most q queries can win
SEUF-CMA game with probability greater than ε. We also say that Σ is strongly
unforgeable.

2.3 EUF-CMA Security

Same as above, existential unforgeability against adaptive chosen message at-
tacks (EUF-CMA) [15] is defined using the following EUF-CMA game between
the adversary and the EUF-CMA challenger:

Setup and Queries. Same as in the SEUF-CMA game.
Output. Finally, the adversary outputs a pair (m̂, σ̂). The adversary wins if

Verify(pk, m̂, σ̂) = accept and m̂ �= mi for all i ∈ {1, . . . , q}.

Definition 2. We say that a signature scheme Σ is (t, q, ε)-EUF-CMA secure
if no adversary running in time less than t and making at most q queries can
win the EUF-CMA game with probability greater than ε. We also say that Σ is
(weakly) unforgeable.

2.4 Computational Diffie-Hellman (CDH) Assumption

The computational Diffie-Hellman problem in a cyclic group G of order p is as
follows: given g, ga, gb ∈ G, output gab ∈ G, where g is a random generator of
G and a, b are random elements in Zp.

Definition 3. We say that the (t, ε)-CDH assumption holds in G if no adversary
running in time less than t can solve the CDH problem with probability greater
than ε.
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2.5 Discrete Logarithm (DL) Assumption

The discrete logarithm problem in a cyclic group G of order p is as follows: given
g, ga ∈ G, output a ∈ Zp, where g is a random generator of G and a is a random
element in Zp.

Definition 4. We say that the (t, ε)-DL assumption holds in G if no adversary
running in time less than t can solve the DL problem with probability greater
than ε.

2.6 Target Collision Resistant Hashing

A target collision resistant hash function (TCRHF), also known as a universal
one-way hash function (UOWHF), is a keyed hash function H : K×Min → Mout

keyed by k ∈ K, where Min is an input space, Mout is an output space and K
is a hash-key space.

Target collision resistance of a keyed hash function is defined using the fol-
lowing TCR game between the adversary and the TCR challenger:

Step 1. The adversary outputs m1 ∈ Min.
Step 2. The challenger selects random k ∈ K, and sends this to the adversary.
Step 3. The adversary outputs m2 ∈ Min. The adversary wins if Hk(m1) =

Hk(m2) and m2 �= m1.

In this game, we call m2 a target collision against m1 under the key k.

Definition 5. We say that a keyed hash function is the (t, ε)-TCRHF if no
adversary running in time less than t can win the TCR game with probability
greater than ε.

2.7 Bilinear Groups

Let G and GT be cyclic groups of prime order p and let g be a generator of G.
We say that G is a bilinear group if there exists a map e: G × G → GT and a
group GT that satisfy the following properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g, g) �= 1.
– Computable: for any u, v ∈ G, there is an efficient algorithm to compute

e(u, v).

3 Transformation for Specific Signatures with TCRHF

In PKC 2006, Boneh, Shen, and Waters [9] proposed a SEUF-CMA secure signa-
ture scheme, by applying a transformation to the Waters signature scheme [27].
The transformation enables any unforgeable signatures which can be partitioned
to be a strongly unforgeable ones. We follow this approach. We first recall the
definition of partitioned signatures by [9] here.
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Definition 6. We say that a signature scheme Σ is partitioned if Σ satisfies
the following two properties:

– Property 1: The signing algorithm Sign can be broken into two deterministic
algorithms S1 and S2 so that a signature on a message m using a secret key
sk is computed as follows:
1. Select a random r ∈ R.
2. Compute σ1 = S1(sk, m, r) and σ2 = S2(sk, r).
3. Output σ = (σ1, σ2) ∈ S1 × S2.

– Property 2: Given σ2 and m ∈ M, there is at most one σ1 so that (σ1, σ2)
is a valid signature on m under pk.

where R is a space of randomness used in S1 and S2, M is a message space of
Σ, and S1 and S2 are output spaces of S1 and S2 respectively.

Then, we introduce a special case of partitioned signatures, which we call
simulatable-partitioned .

Definition 7. We say that signature scheme Σ is simulatable-partitioned if Σ
satisfies the following three properties:

– Property 1 and Property2: Same as partitioned (Definition 6).
– Property 3: There exist following two algorithms:

• KeyGen′ : a probabilistic algorithm. It takes as input 1κ (security param-
eter κ), and outputs (sk′, pk′) with trapdoor TD for the algorithm S′

1
below, where the pair (sk′, pk′) is a valid key pair for Σ and the distri-
bution of it is the same as (sk, pk) output from the original KeyGen.
This process is denoted: (sk′, pk′, TD) ← KeyGen′(1κ).

• S′
1 : a deterministic algorithm. It takes as input sk, σ2, m and TD output

from KeyGen′ defined as above, without r, and outputs σ′
1 ∈ S1 such that

Verify(pk, m, (σ′
1, σ2)) = accept.

This process is denoted: σ′
1 = S′

1(sk, m, σ2, TD).

Next, we describe a transformation that converts any simulatable-partitioned
unforgeable signatures into strongly unforgeable ones. Let Σ = (KeyGen, Sign,
Verify) be a EUF-CMA secure signature scheme which is simulatable-partitioned .
This means, the signing algorithm Sign can be broken into S1 and S2, and there
exist two algorithms KeyGen′ and S′

1 which satisfy the property 3 of Definition 7.
Let p be a sufficiently large prime and G be a cyclic group of order p. As in [9], we
assume that each element of G has a unique encoding so that the property 2 of
simulatable-partitioned will hold. Let H : S2 × {0, 1}∗ → Zp, G : K × S2 → Zp,
and F : K × G → M be TCRHFs (the first set of the domain of these hash
functions denotes the hash-key space and the second denotes the input space to
be hashed). Here, we also assume that the hash-key space of the H can be S2
(i.e., range of S2), and we can sample random elements in S2 efficiently.

The description of a new scheme Σnew = (KeyGennew , Signnew, Verifynew) ob-
tained from our transformation is described in Fig. 1
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KeyGennew(1κ) :
(sk, pk) ← KeyGen(1κ)
g, h1, h2 ← G; k ← K
SK = (sk), PK = (pk, g, h1, h2, k)
Output (SK, PK).

Signnew(SK, M) :
s ← Zp; r ← R; σ2 = S2(sk, r)

t = Hσ2(M); t′ = Gk(σ2); m = gths
1h

t′
2

m′ = Fk(m); σ1 = S1(sk,m′, r)
Output σ = (σ1, σ2, s).

Verifynew(PK, M, σ) :
Parse σ as (σ1, σ2, s).

t = Hσ2(M); t′ = Gk(σ2); m = gths
1h

t′
2 ; m′ = Fk(m)

Output accept if Verify(pk, m′, (σ1, σ2)) = accept. Otherwise output reject.

Fig. 1. Description of Σnew

Security. We prove the strong unforgeability of the new scheme Σnew in Appendix.

Theorem 1. The new scheme Σnew is (t, q, ε)-SEUF-CMA secure if the follow-
ing conditions are satisfied.

– The underlying scheme Σ is (t, q, ε/6)-EUF-CMA secure and simulatable-
partitioned signature scheme.

– The (t, ε/3)-DL assumption holds in G.
– H, G, and F are (t, ε/6q), (t, ε/6q), and (t, ε/6q)-TCRHFs respectively.

Idea. The construction is based on [9]. In our scheme, we use three TCRHFs.
The role of the H is to hash the message. The role of G is to ensure that different
σ2 will be mapped to different elements in Zp. Thus, an injective mapping can
be used (and then we can reduce the number of forgery types in the security
proof). The role of F is similar to G. So if it is obvious that each element in G

will always be mapped to a different element of M (i.e., the message space of the
underlying signature scheme), then we can replace F with an injective mapping.

Doubling the role of a part of the signature σ2, which is a randomness element
of the signature as well as a hash-key of H , is the technique from [19]. Since σ2
is generated each time the underlying Sign is run and is a message-independent
random value, σ2 can play the same role as a hash-key in the TCRHF-based
hash-and-sign construction which we mentioned in Section 1.

As a price of using σ2 as a key of H , the simulator in the security proof needs to
be able to compute valid σ1 without knowing inner randomness r when reducing
the security to target collision resistance of H . That is why we introduce the
simulatable-partitioned property.

As in the case of [9], generating σ1 implies that a signer signs both a original
message M input into Signnew and a randomness element σ2. This ensures that
any adversary can neither modify the original message nor use other random-
ness without invaliding the complete signature (σ1, σ2), which would lead to the
strong unforgeability. The authors of [9] used a collision resistant hash function
to ensure that a hash value of any pair (M, σ2) will differ from each other. In our
scheme, we use a combination of a DL-based chameleon hash function [18] and
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the target collision resistant hash functions H and G for providing similar func-
tionalities to the collision resistant hash function used in [9]. And the chameleon
hash function in our scheme is also used to break a circularity: in order to create
a message m′ for the underlying signing algorithm (i.e. Sign, which takes m′ as
an input), the simulator has to know in advance the randomness r used to create
a part of the signature (i.e., σ2, which is output from Sign).

The algorithms KeyGen′ and S′
1 satisfying the property 3 of simulatable-

partitioned signatures are needed only for proving security. Thus, it is sufficient
to show their existence.

4 A Concrete CDH-Based Scheme

In this section, we construct a concrete signature scheme based on CDH. The
idea to obtain the SEUF-CMA signature scheme without collision resistant hash
function is applying our transformation proposed in Section 3 to the Waters
scheme [27] straightforwardly.

The description of the concrete scheme is as follows. Let p be a sufficiently
large prime, and G be a cyclic bilinear group of order p. Let H : G×{0, 1}∗ → Zp,
G : K × G → Zp, and F : K × G → {0, 1}n be TCRHFs respectively. Let
e : G × G → G1 denote the bilinear map. We assume that each element of G has
a unique encoding. Note that in the case of the Waters scheme, S2 = G. And
we also assume that the hash-key space of H can be G (We can assume that we
have H : K×{0, 1}∗ → Zp, the hash-key space of which is the same as G and F ,
and some bijective mapping between G and K that is efficiently bidirectionally
computable. When we specify K = Zp for some prime number p, a bidirectional
mapping between G of order p on elliptic curves and Zp [11] can be used, for
example.).

The concrete scheme Σ = (KeyGen, Sign, Verify) is described in Fig. 2. We note
that the computation of the paring value e(g1, g2) used in Verify can be done in
KeyGen and be included in PK. But we follow the style of description as written
in [9].

Corollary 1. The signature scheme in Fig. 2 is (t, q, ε)-SEUF-CMA secure if
the following conditions are satisfied:

– The (t, ε/48(n + 1)q)-CDH assumption holds in G.
– H, G, and F are (t, ε/6q), (t, ε/6q), and (t, ε/6q)-TCRHFs respectively.

Proof. It is already proven in the standard model that the Waters scheme is
(t, q, ε)-EUF-CMA secure assuming that the (t, ε/8(n + 1)q)-CDH assumption
holds in G. Thus, the Waters scheme is (t, q, ε/6)-EUF-CMA secure assuming
that the (t, ε/48(n + 1)q)-CDH assumption holds in G. In this case, the (t, ε/3)-
DL assumption also holds in G. So, all that is left to do is to make sure that
the Waters scheme satisfies a simulatable-partitioned property. The following
description is the original KeyGen algorithm of the Waters scheme.
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KeyGen(1κ) :
g ← G; α ← Zp; g1 = gα

g2, h1, h2, u′, u1, . . . , un ← G

U = (u1, . . . , un)
k ← K
SK = gα

2 , PK = (g, g1, g2, h1, h2, u
′, U, k)

Output (SK, PK).

Sign(SK, M) :
s, r ← Zp; σ2 = gr

t = Hσ2(M); t′ = Gk(σ2)

m = gths
1h

t′
2 ; m′ = Fk(m)

Parse m′ as m′
1m

′
2 . . . m′

n

(each of m′
i is the i-th bit of m′).

σ1 = gα
2 · (u′ ∏n

i=1 u
m′

i
i )r

Output σ = (σ1, σ2, s).

Verify(PK,M, σ) :
Parse σ as (σ1, σ2, s).

t = Hσ2(M); t′ = Gk(σ2); m = gths
1h

t′
2 ; m′ = Fk(m)

Parse m′ as m′
1m

′
2 . . . m′

n (each of m′
i is the i-th bit of m′).

Check e(σ1, g)
?
= e(σ2, u

′ ∏n
i=1 u

m′
i

i ) · e(g1, g2).
Output accept if this holds. Otherwise output reject.

Fig. 2. Proposed Signature Scheme

KeyGen : 1. Select random g, g2 ∈ G.
2. Select random α ∈ Zp, and set g1 = gα.
3. Select random u′, u1, u2, . . . , un ∈ G.
4. Set sk = gα

2 , pk = (g, g1, g2, u
′, u1, u2, . . . , un).

5. Output (sk, pk).

Here, we define KeyGen′ by the algorithm below which is changed after the step
3 of original KeyGen (step 1 and 2 are the same).

KeyGen′ : 1. Select random g, g2 ∈ G.
2. Select random α ∈ Zp, and set g1 = gα.
3. Select random β′, β1, β2, . . . , βn ∈ Zp, and then set u′ = gβ′

, u1 =
gβ1 , u2 = gβ2 , . . . , un = gβn .

4. Set sk′ = gα
2 , pk′=(g, g1, g2, u

′, u1, u2, . . . , un), TD = (β′, β1, β2, . . . ,βn).
5. Output (sk′, pk′, TD).

It is obvious that the distribution of (sk′, pk′) output from KeyGen′ can be the
same as the distribution of (sk, pk) output from KeyGen.

The Waters signature is shown to be partitioned in [9]. The description of S1
and S2 are:

σ1 = S1(sk, m, r) = (sk) · (u′ ∏n
i=1 umi

i )r ∈ G

σ2 = S2(sk, r) = gr ∈ G

where mi ∈ {0, 1} is the i-th bit of m ∈ {0, 1}n, and u′, u1, . . . , un ∈ G, r ∈ Zp,
and (sk) is an element of G. Here, using TD and σ2, we can write σ1 as follows:

σ1 = (sk) · (u′ ∏n
i=1 umi

i )r = (sk) · (grβ′ ∏n
i=1(g

rβimi))
= (sk) · (gr)β′+

∑n
i=1 βimi = (sk) · (σ2)β′+

∑n
i=1 βimi
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This equality means that a valid σ1 can be generated only from sk, m, σ2, TD,
without knowing r. Thus, we can define S′

1(sk, m, σ2, TD) by the last equa-
tion. Now, we have seen that S′

1, KeyGen′, and TD satisfy the property 3 of
simulatable-partitioned . Therefore, the Waters scheme is simulatable-partitioned .

In summary, if we assume that the requirements of Corollary 1 all hold, then
the requirements of Theorem 1 are satisfied, which means that the scheme in
Fig. 2 is SEUF-CMA secure. ��

Asymmetric pairing. In our scheme in this section, we use a symmetric pairing
e : G × G → GT where |G| = |GT | = p. But we note that an asymmetric pairing
setting can be used: e : G1 × G2 → GT where |G1| = |G2| = |GT | = p, G1 �= G2.
Security then follows from the co-CDH problem [8].

One of the biggest merits to use asymmetric ones is that we can utilize curves
due to Barreto and Naehrig [3]. If we use them, the representation of the element
of G1 can be short (e.g., 160-bit), while the representation of the elements of G2
becomes several times larger than that of G1. For more details, see [22,17]. If
these curves are used, we can shorten the signature size so that both σ1 and σ2
are included in G1, while key parameters are almost included in G2 and become
larger. Another approach is to shorten the public key size by choosing the public
key parameters from G1, while the signature elements are included in G2.

5 Comparison

Table 1 compares our proposed scheme and other strongly unforgeable signatures
(the Cramer-Shoup (CS) scheme [13], the Boneh-Boyen (BB) scheme [5], and the
Boneh-Shen-Waters (BSW) scheme [9]) that are provable in the standard model.

As compared to the BB scheme, the BB scheme is more efficient in the sig-
nature size, the signing cost, and the verification cost than ours. However, an
advantage of ours is that our scheme is based on CDH, much weaker assumption
than the q-SDH assumption. And, the message space of the BB scheme is defined
only for Zp. Thus, some hashing operation is necessary if longer messages are
signed. Of course hash-and-sign paradigm with a collision resistant hash func-
tion or with a TCRHF can be used. If the TCRHF-based hash-and-sign is used,
the signature size increases by the hash-key k of a TCRHF (here we denote H)
and the size of the group (in which the signature elements are included) may
also increase for deciding the size of p so that k||Hk(M) belongs to the original
message space Zp.

As compared to the BSW scheme, an advantage of ours is that ours doesn’t
rely on a collision resistant hash function, and a disadvantage is that our scheme
is a bit worse in computation for signing and verification for computing a multiple
exponentiation of three bases gths

1h
t′

2 (in the BSW scheme, only two bases gths

is needed). However, this difference can be smaller by using the simultaneous
exponentiation technique [20].

We cannot directly compare computation costs and the assumptions with CS
scheme. However, we can say that the signature size of our scheme is shorter
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Table 1. Comparison among the strongly unforgeable signature schemes in the stan-
dard model. “CRHF” denotes whether an arbitrary-input-length collision resistant hash
function is necessary or not in the security proof. “Message space” denotes the input
message space assumed for the signing algorithm of the scheme. So if one wants to sign
a message from a larger space than this, some hashing operation such as hash-and-sign
paradigm is needed. The Waters scheme is not SEUF-CMA secure, but we include for
the purpose of reference. p denotes the order of cyclic groups G and G1.

Assumption Message
space

CRHF Signature
Size

Signing
Cost‡†

Verification
Cost‡†

CS [13]([19])† Strong RSA {0, 1}∗ no 161 + 2|n′| 2m-expZn′ 2m-expZn′

BB [5]‡ q-SDH Zp no 2|G1| 1expG1 1P + 1m-expG1

BSW [9] CDH {0, 1}∗ yes 2|G| + |p| 1m-expG +
3expG

2P + 1m-expG

+ 1expG

Ours (§4) CDH {0, 1}∗ no 2|G| + |p| 1m-expG +
3expG

2P + 1m-expG

+ 1expG

Waters [27] CDH {0, 1}n no 2|G| 3expG 2P + 1expG

† We assume that the CS scheme [13] is constructed using Mironov’s way of using
TCRHF, which shorten the signature size [19]. n′ denotes the RSA modulus.

‡ In this scheme, we assume that an asymmetric pairing e : G1 × G2 → GT is used.
‡† In these columns, P denotes the numbers of paring operation. expG denotes the

number of single base exponentiations in G, and m-expG denotes the number of
multiple exponentiations in G. We omit the costs of any other operations. We

count so called the “Waters hash” (u′ ∏n
i=1 u

m′
i

i ) as one single base exponentiation.
We omit the pairing computation which is independent of message and signature
and can be pre-computed in KeyGen of the Waters scheme (thus, the BSW scheme
and ours).

considering the currently used RSA modulus size. As for assumptions, the CDH
assumption might be a more reasonable assumption than the strong RSA as-
sumption because CDH has a longer history.

6 Conclusion

In this paper, we constructed a strongly unforgeable signature scheme based on
the CDH assumption in bilinear groups and target collision resistant hash func-
tions. The signature scheme is almost as efficient as [9], while it does not rely
on collision resistant hash functions whose input length is arbitrary. Instead,
our scheme utilize a target collision resistant hash function, which is a weaker
primitive than a collision resistant hash function. Our scheme is not affected by
recently emerging collision finding attacks against hash functions. We presented
the construction in two steps. First we showed a transformation that converts
specific unforgeable signatures into strongly unforgeable signatures and proved
its security. And then we applied this transformation to the Waters signature
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scheme [27]. We also compared our scheme with other strongly unforgeable sig-
nature schemes in the standard model and discussed their efficiency.
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Appendix : Proof of Theorem 1

Proof. Suppose A is an adversary that breaks the (t, q, ε)-SEUF-CMA security of
Σnew. At the stage Setup of the SEUF-CMA game, A is given a public key PK =
(pk, g, h1, h2, k). At the stage Queries, A issues a message Mi as the i-th query
and given a corresponding signature σi = (σi,1, σi,2, si) for all i ∈ {1, . . . , q}.
We define ti = Hσi,2(Mi), t′i = Gk(σi,2), mi = gtihsi

1 h
t′

i
2 , and m′

i = Fk(mi). At
the stage Output, A outputs (M̂, σ̂ = (σ̂1, σ̂2, ŝ)). We also define t̂ = Hσ̂2 (M̂),
t̂′ = Gk(σ̂2), m̂ = gt̂hŝ

1h
t̂′

2 , and m̂′ = Fk(m̂). We classify forgeries output by A
into following six types.

Type 1. ∀i ∈ {1, . . . , q} : m̂′ �= m′
i.

Type 2. ∃i ∈ {1, . . . , q} : m̂′ = m′
i ∧ m̂ �= mi.

Type 3. ∃i ∈ {1, . . . , q} : m̂′ = m′
i ∧ m̂ = mi ∧ t̂′ �= t′i.

Type 4. ∃i ∈ {1, . . . , q} : m̂′ = m′
i ∧ m̂ = mi ∧ t̂′ = t′i ∧ σ̂2 �= σi,2.

Type 5. ∃i ∈ {1, . . . , q} : m̂′ = m′
i ∧ m̂ = mi ∧ t̂′ = t′i ∧ σ̂2 = σi,2 ∧ t̂ �= ti.

Type 6. ∃i ∈ {1, . . . , q} : m̂′ = m′
i ∧ m̂ = mi ∧ t̂′ = t′i ∧ σ̂2 = σi,2 ∧ t̂ = ti.
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If A succeeds in producing a forgery, the forgery output by A is always included
in one of the types above. We will show that the forgery of type 1 can be used
to break the EUF-CMA security of the underlying scheme Σ, type 3 and type 5
to solve the DL problem in G and type 2, type 4 and type 6 to break TCRHFs.
Our simulator can flip a coin at the beginning of the simulation to guess which
type of forgery A will produce, and set up the simulations below appropriately.

Type 1. Suppose A is a type 1 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B1 that can break the (t, q, ε)-EUF-
CMA security of underlying Σ. B1 is first given pk, and tries to output a forgery
(m̂′, σ̂ = (σ̂1, σ̂2)). The description of B1 is as follows:

Setup. B1 generates PK for A as follows:
1. Select random g ∈ G, k ∈ K.
2. Select random a, b ∈ Z

∗
p and set h1 = ga, h2 = gb.

3. Give PK = (pk, g, h1, h2, k) to A.
Queries. B1 responds to the query Mi issued by A as follows:

1. Select a random wi ∈ Zq and set mi = gwi .
2. Compute m′

i = Fk(mi).
3. Issue m′

i as i-th query to its own EUF-CMA challenger, and obtain a
valid signature (σi,1, σi,2) on m′

i.
4. Compute ti = Hσi,2(Mi), t′i = Gk(σi,2).
5. Compute si = (wi − ti − bt′i)/a.
6. Return σi = (σi,1, σi,2, si) to A.

Output. Finally, A outputs a type 1 forgery (M̂, (σ̂1, σ̂2, ŝ)). B1 computes m̂′

according to the procedure of Verifynew , then outputs (m̂′, (σ̂1, σ̂2)).

Note that the description of Σnew implies that if Verifynew(PK, M̂, (σ̂1, σ̂2, ŝ))
= accept, then Verify(pk, m̂′, (σ̂1, σ̂2)) = accept where m̂′ is computed appro-
priately. Since A is a type 1 adversary, m̂′ �= m′

i holds for all i ∈ {1, . . . q}.
Therefore, whenever A succeeds in producing a type 1 forgery, B1 can produce
a forgery on a new message m̂′ for the underlying signature scheme Σ and win
the EUF-CMA game.

Type 2. Suppose A is a type 2 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B2 that can break the (t, ε/q)-TCRHF
F . B2 tries to win the TCRHF game about F . The description of B2 is as follows:

Setup. B2 generates PK for A as follows:
1. Select a random index j ∈ {1, . . . , q}.
2. Run underlying KeyGen and obtain sk, pk.
3. Select a random g ∈ G.
4. Select random a, b ∈ Z

∗
p and set h1 = ga, h2 = gb.

5. Select a random w̄ ∈ Zp and compute m̄ = gw̄.
6. Output m̄ for its own TCR challenger and obtain k ∈ K.
7. Compute m̄′ = Fk(m̄)
8. Give PK = (pk, g, h1, h2, k) to A, while SK = sk is kept secret.
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Queries. B2 responds to the query Mi issued by A as follows:
– i �= j : Return σi = Signnew(SK, Mi) to A.
– i = j :

1. Set mj = m̄, m′
j = m̄′.

2. Run underlying Sign(sk, m′
j) and obtain (σj,1, σj,2).

3. Compute tj = Hσj,2(Mj), t′j = Gk(σj,2).
4. Compute sj = (w̄ − tj − bt′j)/a.
5. Return σj = (σj,1, σj,2, sj) to A.

Output. Finally, A outputs a type 2 forgery (M̂, (σ̂1, σ̂2, ŝ)). B2 computes m̂
from the forgery according to the procedure of Verifynew. Then, B2 outputs
m̂ if Fk(m̂) = Fk(mj) ∧ m̂ �= mj holds, otherwise B2 reports failure and
aborts.

Since A is a type 2 adversary, there exists at least one i ∈ {1, . . . , q} such that
Fk(m̂) = Fk(mi) ∧ m̂ �= mi holds (note that m̂′ = m′

i implies Fk(m̂) = Fk(mi)).
Thus, m̂ is a target collision against mi for F under the key k. Probability that
B2 chooses such i as j at the stage Setup is at least 1/q. Therefore, if A succeeds
in producing a type 2 forgery, B2 can break TCRHF F with probability at least
1/q.

Type 3. Suppose A is a type 3 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B3 that (t, ε)-solves the DL problem.
B3 is first given an instance of the DL problem (g, X) and tries to output logg X .
The description of B3 is as follows:

Setup. B3 generates PK for A as follows:
1. Set g for element of PK.
2. Run underlying KeyGen and obtain sk, pk.
3. Select a random a ∈ Z

∗
p and set h1 = ga, h2 = X .

4. Select a random k ∈ K.
5. Give PK = (pk, g, h1, h2, k) to A while SK = sk is kept secret.

Queries. B3 responds to the query Mi issued by A by returning σi = Signnew

(SK, Mi) to A.
Output. Finally, A outputs a type 3 forgery (M̂, (σ̂1, σ̂2, ŝ)). B3 computes t̂

and t̂′ according to the procedure of Verifynew, then computes logg X =
(t̂ + aŝ − ti − asi)/(t′i − t̂′) and outputs it as a solution of the DL problem.

Since A is a type 3 adversary, there exists i such that m̂ = mi ∧ t̂′ �= t′i holds,
and B3 can know such i. Note that m̂ = mi indicates gt̂hŝ

1h
t̂′

2 = gtihsi
1 h

t′
i

2 , which
can be written as gt̂+aŝX t̂′

= gti+asiXt′
i. From this equality one can compute

base g logarithm of X . t̂′ �= t′i ensures t′i− t̂′ �= 0. Therefore, whenever A succeeds
in producing a type 3 forgery, B3 can solve the DL problem.

Type 4. Suppose A is a type 4 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B4 that can break the (t, ε/q)-TCRHF
G. B4 tries to win the TCR game about G. The description of B4 is as follows:
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Setup. B4 generates PK for A as follows:
1. Select a random index j ∈ {1, . . . , q}.
2. Run underlying KeyGen and obtain sk, pk.
3. Select random g, h1, h2 ∈ G.
4. Select a random r̄ ∈ R and compute σ̄2 = S2(sk, r̄).
5. Output σ̄2 for its own TCR challenger and obtain k ∈ K.
6. Give PK = (pk, g, h1, h2, k) to A, while SK = sk is kept secret.

Queries. B4 responds to the query Mi issued by A as follows:
– i �= j : Return σi = Signnew(SK, Mi) to A.
– i = j : Compute σi = (σj,1, σj,2, sj) the same way as Signnew using r̄ as

rj and σ̄2 as σj,2, then return it to A.

Output. Finally, A outputs a type 4 forgery (M̂, (σ̂1, σ̂2, ŝ)). B4 outputs σ̂2 if
Gk(σ̂2) = Gk(σj,2) ∧ σ̂2 �= σj,2, otherwise B4 reports failure and aborts.

Since A is a type 4 adversary, there exists at least one i ∈ {1, . . . , q} such
that Gk(σ̂2) = Gk(σi,2) ∧ σ̂2 �= σi,2 holds (note that t̂′ = t′j implies Gk(σ̂2) =
Gk(σi,2)). Thus, σ̂2 is a target collision against σi,2 for G under the key k. Proba-
bility that B4 chooses such i as j at the stage Setup is at least 1/q. Therefore, if A
succeeds in producing a type 4 forgery, B4 can break TCRHF G with probability
at least 1/q.

Type 5. Suppose A is a type 5 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B5 that (t, ε)-solves the DL problem.
B5 is first given an instance of DL problem (g, X), and tries to find logg X . The
description of B5 is as follows:

Setup. B5 generates PK for A as follows:
1. Set g for element of PK.
2. Run underlying KeyGen and obtain sk, pk.
3. Set h1 = X .
4. Select random h2 ∈ G, k ∈ K.
5. Give PK = (pk, g, h1, h2, k) to A, while SK = sk is kept secret.

Queries. B5 responds to the query Mi issued by A by returning σi = Signnew

(SK, Mi) to A.
Output. Finally, A outputs a type 5 forgery (M̂, (σ̂1, σ̂2, ŝ)). B5 computes t̂ =

Hσ̂2(M̂), and then computes logg X = (t̂ − ti)/(si − ŝ) and outputs it as a
solution of the DL problem.

Since A is a type 5 adversary, there exists i such that m̂ = mi ∧ t̂ �= ti, and
B5 can know such i. Note that m̂ = mi implies gt̂X ŝ = gtiXsi . In the equality,
si − ŝ = 0 never happens since ŝ = si ∧ gt̂X ŝ = gtiXsi implies t̂ = ti, which
means that one can compute base g logarithm of X from the equality. Therefore,
whenever A succeeds in producing a type 5 forgery, B5 can solve the DL problem.
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Type 6. Suppose A is a type 6 adversary and can break the (t, q, ε)-SEUF-CMA
security of Σnew. We construct a simulator B6 that can break the (t, ε/q)-TCRHF
H . B6 tries to win the TCR game about H . The description of B6 is as follows:

Setup. B6 generates PK for A as follows:
1. Select a random index j ∈ {1 . . . q}.
2. Run KeyGen′ and obtain sk, pk, TD.
3. Select random g, h1, h2 ∈ G, k ∈ K.
4. Give PK = (pk, g, h1, h2, k) to A, while SK = sk is kept secret.

Queries. B6 responds to the query Mi issued by A as follows:
– i �= j : Return σi = Signnew(SK, Mi) to A.
– i = j :

1. Output Mj for its own TCR challenger and obtain σ̄2 ∈ S2.
2. Set σj,2 = σ̄2.
3. Compute tj = Hσj,2(Mj), t′j = Gk(σj,2).
4. Select random sj ∈ Zp.

5. Compute mj = gtjh
sj

1 h
t′

j

2 .
6. Compute m′

j = Fk(mj).
7. Compute σj,1 = S′

1(sk, m′
j , σ̄2, TD).

8. Return σj = (σj,1, σj,2, sj) to A.
Output. Finally, A outputs a type 6 forgery (M̂, (σ̂1, σ̂2, ŝ)). B6 outputs M̂ if

Hσ̂2(M) = Hσj,2 ∧ σ̂2 = σj,2 ∧ M̂ �= Mj holds, otherwise B6 reports failure
and aborts.

Note that we need KeyGen′ and S′
1 in order to create valid σj,1 without knowing

r̄ that would be used to generate σj,2 = σ̄2. If A wins the SEUF-CMA game,
(M̂, σ̂1, σ̂2, ŝ) �= (Mi, σi,1, σi,2, si) holds for all i ∈ {1 . . . q}. Since A is a type
6 adversary, there exists at least one i ∈ {1, . . . , q} such that t̂ = ti ∧ σ̂2 =
ˆσi,2 ∧ ŝ = si holds. Note that t̂ = ti implies Hσ̂2(M̂) = Hσi,2(Mi). Property

2 of simulatable-partitioned signature indicates that if m̂′ = m′
i ∧ σ̂2 = σi,2

holds, then we have σ̂1 = σi,1. Put everything together, we have ∃i ∈ {1, . . . , q}
: M̂ �= Mi ∧ σ̂2 = σi,2 ∧ Hσ̂2(M̂) = Hσi,2(Mi). In other words, there exists
i ∈ {1, . . . , q} such that M̂ is a target collision against Mi for H under the key
σ̂ = σi. Probability that B6 chooses such i as j at stage Setup is at least 1/q.
Therefore, if A succeeds in producing a type 6 forgery, B6 can break TCRHF H
with probability at least 1/q.

In summary, we showed how to construct simulators for all six types of the
adversary. Note that simulations for all types of A are perfect. Type 1 can be
used to break EUF-CMA security of underlying Σ, type 3 and type 5 to solve
the DL problem, type 2,4 and 6 to break TCRHF. This completes the proof of
Theorem 1. ��
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Abstract. We discuss two common pitfalls found in proofs of security
of various certificateless signature (CLS) schemes. As a result of the first
observation, we are able to show that a CLS scheme ([Goy06]), previously
thought to be secure, is vulnerable to a key replacement attack. We
then proceed to define a class of CLS schemes whose security is provable
by standard techniques, leading to a more efficient version of a known
CLS scheme ([ARP03]) and a (previously unknown) security proof for
another ([LCS05]).
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1 Introduction

CertificatelessPublic-KeyCryptography (CL-PKC) was introduced byAl-Riyami
and Paterson in [ARP03] as a compromise between ID-Based Cryptography (ID-
PKC) [Sha85] and traditional PKIs. Its main design goal is to avoid the inherent
key escrow of ID-PKC while taming the complexity of running a full-blown PKI.
To accomplish this, the responsibility for the generation of the private key is shared
by a trusted Key Generation Center (KGC) and the user.

The peculiar setting of certificateless signatures (CLS) makes proving security
of such schemes somewhat tricky. Otherwise widely used techniques must be ap-
plied with care when used in this setting. The Oracle Replay Technique [PS00]
is a good example of such a technique. It is a very important tool for proving
the security of a large class of signature schemes, the so-called generic signature
schemes, such as Schnorr’s [Sch91], that previously had no security proof. As-
suming the existence of an adversary capable of generating signature forgeries,
two related signatures on the same message are obtained; these forgeries can
then be used to solve a hard problem, thus producing a reductionist security
proof. The original formulation of the oracle replay technique, however, does not
directly apply to the certificateless setting, since it does not cover the possibility
of public-key replacement attacks. Nonetheless, most CLS schemes are proved
secure using this technique, leaving open the possibility of such attacks. In this
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work we identify the occurrence of such shortcomings in the security proofs of
a few CLS schemes, while also providing improved versions for two of these
schemes.

Additionally, we present an attack on the CLS scheme from [Goy06], identi-
fying another common inaccuracy, namely the unjustified assumption that an
adversary knows the private key corresponding to the public key used in a forgery.

1.1 Organization

In Section 2 we review a few important concepts used throughout this paper. In
Sections 3 and 4 we discuss two common pitfalls in the security proofs of CLS
schemes, leading us to the main results in this paper. In Section 5 we make a
quick summary of the available CLS schemes. Section 6 brings our concluding
remarks.

2 Preliminaries

2.1 Bilinear Maps

Let G1, G2 and GT be groups such that |G1| = |G2| = |GT |. A bilinear map is
a map e : G1 × G2 → GT that satisfies the following properties.

1. Bilinearity. For all P ∈ G1, Q ∈ G2 and a, b ∈ Z, e(aP, bQ) = e(P, Q)ab

2. Non-degeneracy. Let Q be a generator of G2 and ψ() an homomorphism
from G2 to G1. Then e(ψ(Q), Q) �= 1.

Additionally, we want the map e to be efficiently computable. Such a bilinear
map is called admissible. In the particular case where G1 = G2, the map is called
symmetric. Examples of bilinear maps widely used in cryptography are the Weil
pairing (as in [BF01]) and the Tate pairing.

2.2 Security Assumptions and Hard Problems

We base our security reductions on a few important definitions presented below.

Definition 1. Decision Diffie-Hellman Problem (DDHP). Given a mul-
tiplicative group (G, .), and α, αa, αb, αc ∈ G, decide whether c = ab.

Definition 2. Computational Diffie-Hellman Problem (CDHP). Given
a multiplicative group (G, .), and α, αa, αb ∈ G, compute X = αab.

Definition 3. q-Strong Diffie-Hellman Problem (q-SDHP). Given multi-
plicative groups G1, G2, both with prime order p, and the (q+2)-tuple (P, Q, αQ,
α2Q, . . . , αqQ), with P ∈ G1 and Q ∈ G2, compute the pair (c, 1

c+αP ), for
c ∈ Z

∗
p.
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Definition 4. Generalized Computational Diffie-Hellman Problem
(GCDHP). Given a multiplicative group (G, .), and α, αa, αb ∈ G, compute
(αabc, αc).

The GCDHP bears a relation to the Generalized Bilinear Diffie-Hellman Problem
(GBDHP) used by Al-Riyami & Paterson [ARP03], similar to the one between
the CDHP and the Bilinear Diffie-Hellman Problem [BF01]: the GCDHP is a
strictly weaker security assumption than the GBDHP.

2.3 Certificateless Signature Schemes

The original definition of a CLS scheme was given by Al-Riyami and Paterson
in [ARP03]. Since then, alternative formulations have been suggested [Den06].
We use the definition below, from [HWZD06]:

Definition 5. A certificateless public-key signature (CLS) scheme consists of
the following five polynomial-time algorithms:

– Setup. Run by the KGC to initialize the system. Receives a security pa-
rameter 1k and returns a list of system parameters params and the master
secret key msk.

– PartialKeyGen. Takes as input params, msk, and the identity ID ∈ {0, 1}∗
and outputs the partial private key DID, which is assumed to be sent to the
correct user through a secure channel.

– UserKeysGen. Takes as input params and generates the user’s public key
PID and corresponding private key, SID.

– CL-Sign. Takes as input params, the user’s identity ID, the pair of secret
keys (DID, SID) and a message M . Outputs a correct signature σ on M .

– CL-Verify. Takes as input params, ID, PID, M and the signature σ, and
outputs ACCEPT if and only if σ is a valid signature by user UID, under public
key PID, on M .

This is a more concise definition that still captures all the features of the original
model, as shown in [HWZD06].

2.4 Security of Certificateless Signatures

The standard definition of security, as introduced by [GMR88], is existential
unforgeability under adaptively chosen message attack. Since there is no certifi-
cation of public keys, in CLS we must always take two types of adversaries into
consideration:

– Type I. An adversary AI that can replace public keys at will, but has no
access to the master key s.

– Type II. An adversary AII that knows the master key s but is not allowed
to replace public keys.
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The security of certificateless signatures is thus expressed by two similar games,
respectively against AI and AII . All our security analysis use the Random Oracle
Model and the adversaries have access to the following operations:

– CreateUser, RevealPartialKey,RevealSecretValue,RevealPublicKey,
QueryHash, ReplacePublicKey, Sign.

If the oracle is required to generate signatures under public keys that were re-
placed by the adversary (as in [ARP03]), it is called a StrongSign oracle. If this
requirement is dropped, then we have a WeakSign oracle. It is our opinion that,
even though a proof using a StrongSign oracle may be desirable, as it gives the
adversary more power, efficiency should not be sacrificed in order to achieve it.
The power an adversary gets from a StrongSign oracle has no analogous in a
real-world situation.

We can now define the two following games, respectively, for AI and AII ;

Definition 6. Game I. Let CI be the challenger algorithm and k be a security
parameter:

1. CI executes Setup(1k) and obtains params and the master secret (msk);
2. CI runs AI on 1k and params. During its run, AI has access to the follow-

ing oracles: RevealPublicKey, RevealPartialKey, RevealSecretValue,
ReplacePublicKey, QueryHash, Sign;

3. AI outputs (ID∗, M∗, σ∗).

AI wins the game if CL-Verify(params,ID∗,PID∗ ,M∗,σ∗)=ACCEPT and both
conditions below hold:

– Sign(ID∗,M∗) was never queried;
– RevealPartialKey(ID∗) was also never queried.

Definition 7. Game II. Let CII be the challenger algorithm and k be a security
parameter:

1. CII executes Setup(1k) and obtains params and the master secret (msk);
2. CII runs AII on 1k, params and msk. During its run, AII has access to the

following oracles: RevealPublicKey, RevealPartialKey, RevealSecretValue,
ReplacePublicKey, QueryHash, Sign;

3. AII outputs (ID∗,M∗, σ∗).

AII wins the game if CL-Verify(params,ID∗,PID∗ ,M∗,σ∗)=ACCEPT and all con-
ditions below hold:

– Sign(ID∗,M∗) was never queried;
– RevealSecretValue(ID∗) was never queried;
– ReplacePublicKey(ID∗, .) was never queried.

For a longer discussion on CLS security models, we refer the reader to [HWZD07].
Throughout the rest of this paper we will mostly be concerned with Type-I
adversaries because it is the attack model that is most peculiar to CLS and
where most of the problems arise.
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3 First Pitfall - A Problem with Security Models

In this section we identify a common misconception on the security model of cer-
tificateless schemes, one which usually leads to vulnerabilities in these schemes.
We use the scheme from [Goy06] to make this claim concrete, presenting a
sketch of the original security proof, pointing our objections, and then propos-
ing an attack, to our knowledge the first attack on this scheme, that takes di-
rect advantage of this misconception on the security model. We would like to
point out that this misconception is found in many security proofs, such as the
ones in [HSMZ05][YHG06] [DW07] [CPHL07], and is not specific to the scheme
from [Goy06]. We merely use this latter scheme to make our presentation more
concrete.

3.1 The Goya-Terada Certificateless Signature Scheme

This very efficient CLS scheme is based on the IBS scheme by Barreto et al.
[BLMQ05] and needs only one pairing calculation for signature verification. The
scheme is defined as below:

– Setup
1. Generate (G1, G2, GT , e) where |G1| = |G2| = |GT | = p and e : G1 ×

G2 → GT is an admissible pairing;
2. choose generators P ∈ G1 and Q ∈ G2 such that P = ψ(Q), where ψ()

is a homomorphism from G2 to G1;
3. compute g = e(P, Q);
4. randomly select the master-key s

R← Z
∗
p and compute Qpub = sQ;

5. choose hash functions H1 : {0, 1}∗ → Z
∗
p and H2 : {0, 1}∗ × {0, 1}∗ ×

GT × GT → Z
∗
p.

– PartialKeyGen. Compute the partial key DA = 1
H1(IDA)+sP .

– UserKeysGen. Pick a random tA ∈ Z
∗
p and compute NA = gtA . NA is the

user’s public key and tA is the user’s secret key.
– CL-Sign. Pick a random r ∈ Z

∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA, NA, U) ∈ Z
∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S, h).
– CL-Verify. Compute U ′ = e[S, H1(IDA)Q + Qpub](NA)−h;

accept if and only if
h = H2(M, IDA, NA, U ′).

3.2 Security Argument Against Type-I Adversaries

We present a sketch of the original proof1 of security against Type-I adversaries.
For gaps in our presentation, we refer the reader to Barreto et al.’s IBS paper
[BLMQ05], whose security is closely related to Goya-Terada’s.
1 We base our presentation on the security reduction presented, in Portuguese, in the

MSc. thesis of one of the authors. Their CLS scheme is also presented in [TGO], but
with a different security reduction.
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As in most proofs of security for CLS schemes, we assume an adversary AI

that can generate a forgery for a given ID, in an adaptively chosen-message
attack. The main security lemma is

Lemma 1. Let AI be a Type-I Adversary that breaks Goya-Terada in time T1
and with non-negligible probability ε1 under a given-ID attack. Let qS and qH1

be the maximum number of queries to, respectively, the Sign and IdentityHash
oracles. Assume that ε1 ≥ (10(qS + 1)(qS + qH1))/2k. Then, the q-SDHP can
be solved within running time T ′

1 ≤ (120686qH1T1)/(ε1(1 − 1
2k )), where k is a

security parameter.

We construct a challenger algorithm CI that uses AI to break the q-SDHP. The
input to CI is (P, Q, αQ, α2Q, . . . , αqQ) and it should output a pair (c, 1

c+αP ).
The system setup phase is identical to the one in the IBS scheme, obtaining

q−1 pairs of the form (wi,
1

α+wi
P ), and Qpub = αQ. CI runs AI with a randomly

chosen ID∗ as target identity. Oracle queries are simulated in an intuitive way, us-
ing the computed pairs (wi,

1
α+wi

P ) to answer ID-Hash and RevealPartialKey

queries (H1(IDi) = wi, DIDi = 1
α+wi

P ), unless ID∗ is queried, in which
case a random answer w∗ different from the precomputed pairs is chsoen and
(H1(ID∗) = w∗, DID∗ = ⊥).

If CI does not abort during the simulation, AI outputs a forgery γ1 = (S1, h1).
The replay technique (Lemma 8) is used to obtain a second, related forgery
γ2 = (S2, h2), such that:

e(S1, QID∗)(N∗)−h1 = e(S2, QID∗)(N∗)−h2 ,

e(S1, QID∗)e(S2, QID∗)−1 = (N∗)h1(N∗)−h2 ,

e(S1 − S2, QID∗) = e(P, Q)t∗(h1−h2),

e([t∗(h1 − h2)]−1(S1 − S2), H1(ID∗)Q + Qpub) = e(P, Q),

and
Y = (h1 − h2)−1(S1 − S2) = t∗(1/(α + w∗))P,

which is almost the result we are looking for, were it not for the t∗ factor, absent
from the proof in [BLMQ05]. This is the private key corresponding to the public
key N∗ under which the signature was forged, which was potentially replaced
by the adversary. Now, the authors of [Goy06] assume that the value t∗ can be
recovered from the adversary; then, it is a simple matter of computing t∗−1Y ,
and proceeding with the technique from [BLMQ05] to finish the reduction. The
whole structure of this security argument is very sound and compelling, except
for this dangerous assumption.

3.3 An Attack on the Scheme

The gap in the security argument above directly leads to an attack on the scheme.
An adversary can perform the following steps to forge signatures on arbitrary
messages:
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– Given the target identity IDA:
1. choose a random tA ∈ Z

∗
q and compute

NA = (e(P, Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2. replace IDA’s public key with NA.

– Now, to a sign message M :
1. choose a random r ∈ Z

∗
q and compute U = N r

A;
2. compute h = H(M, IDA, NA, U);
3. compute S = (r + h)tAP ;
4. output the forgery γ = (S, h).

So, γ is a valid forgery on message M because it is accepted by the verification
procedure:

U ′ = e[S, H1(IDA)Q + Qpub](NA)−h

= e[(r + h)tAP, (H1(IDA) + s)Q]gtA(H1(IDA)+s)(−h)

= g(r+h)tA(H1(IDA)+s)g−htA(H1(IDA)+s)

= grtA(H1(ID)+s)

= U.

Therefore, h = H2(M, IDA, NA, U ′).
Notice that the adversary performing this attack is unable to compute a “cor-

rect” private key corresponding to the public key he published. Therefore, the
assumption that one can recover the private key’s value from the adversary is an
unreal requirement that has, nonetheless, been used in other security proofs of
CLS schemes such as [HSMZ05] [YHG06] [DW07] [CPHL07]. We do not claim
that all these are insecure2, we merely claim that their security results should
not be trusted as is.

4 Second Pitfall - On the Use of the Oracle Replay
Technique

In this section we discuss the use of the oracle replay technique on CLS schemes.
This proof technique is mainly based on a result from [PS00] that is widely
known as the Forking Lemma:

Definition 8. Forking Lemma. Let S be a generic signature scheme. Let A be
a probabilistic polynomial-time Turing machine, with only public data as input.
Let Q and R be, respectively, the number of queries made by A to the random or-
acle and to S’s signing oracle. Assume that, within a time bound τ , A produces,
with probability ε ≥ 10(R+1)(R+Q)

2k , a valid signature (m, U, h, V ). If the triples
(U, h, V ) can be simulated without knowing the secret key, with an indistinguish-
able distribution probability, then there is another machine which has control
2 In fact, later on we prove the security of (a slight modification of) the scheme

from [HSMZ05].
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over the machine obtained from A replacing interaction with the signer by sim-
ulation, and which produces two valid signatures (m, U, h, V ) and (m, U, h′, V ′)
such that h �= h′, within time τ ′ ≤ 120686QT

ε .

This definition is based on the notion of a generic signature scheme, against
which the adversary A generates a forgery. Generic signature schemes are defined
as follows:

Definition 9. A signature scheme S is said to be generic if, given the input
message M , it produces triples (σ1, h, σ2), where:

1. σ1 takes its value randomly within a large set;
2. h is the hash value of m, σ1;
3. σ2 depends only on σ1, m and h.

Well-known examples of generic signature schemes are Schnorr [Sch91], and sig-
nature schemes derived from the Fiat-Shamir heuristic [FS87]. The problem lies
in directly applying the Forking Lemma to CLS schemes. Clearly, the possibility
of key replacement is not covered by the original model and is an exploitable
vulnerability. Nevertheless, many CLS schemes, such as [YHG06] [HSMZ05]
[Goy06], use the replay technique to prove their security, without explicitly jus-
tifying its use in their particular context.

4.1 Forking Lemma and CLS

In order to define a certificateless version of the Forking Lemma, we first have
to define what is the certificateless equivalent of a generic signature scheme:

Definition 10. CL-Generic Signature Schemes. A certificateless signature
scheme S is said to be CL-generic if, given the input message M , it produces
triples (σ1, h, σ2), where:

1. σ1 takes its value randomly within a large set;
2. h is the hash value of at least m, σ1 and the user’s public key PID ;
3. σ2 depends only on σ1, m and h.

Note that, h or σ1 could eventually be omitted, if they can be correctly recov-
ered from the other two components. The schemes from [HSMZ05] and [Goy06]
are CL-generic, while the ones from [ARP03], [YHG06] are not. Notably, the
latter scheme had a security proof which used the replay technique, but was,
nevertheless, broken in [ZF06].

The reasoning behind this definition is the fact that, by making the message-
hash depend on the public key, we thwart any attempt by the adversary of first
“guessing” a signature and then computing a public key that will make the
verification process accept that signature.

A little more formally, we note that a typical (greatly simplified) successful
execution of the replay technique goes as follows:
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1. The forger F is run, making various oracle queries, and outputs a forgery
γ = 〈m, σ1, h, σ2〉;

2. then F is run again, with the same random tape, receiving the same answer
to all oracle queries up to the point when it queries H(m, σ1): that is when
the execution is “forked” and a different oracle answer h′ is given;

3. F outputs a forgery γ′ = 〈m, σ′
1, h

′, σ′
2〉.

Note that the value of σ1 in both executions must be the same, as F is run with
the same random tape. If the fork is successful, the two related forgeries γ and
γ′ are such that σ1 = σ′

1 but σ2 �= σ′
2.

By guaranteeing that the public key is in that hash query, we can be sure that
any public-key replacements have already taken place at that moment, and that
PID∗ = P ′

ID∗ .
This somewhat informal argument supports our claim that the Forking Lemma

is also valid for CL-generic signature schemes: a formal proof of this fact would be
almost identical to the original proof in [PS00].

The next section brings an example of the use of this definition.

4.2 Al-Riyami and Paterson’s CLS Scheme

In [ARP03], Al-Riyami and Paterson proposed the first CLS scheme. They did
not provide any security proof for this scheme and, in fact, it was later [HSMZ05]
proved insecure. We analyze the corrections proposed to this scheme and put
forth a new, more efficient, version of the scheme.

Let us begin by presenting the original scheme:

The Scheme

– Setup.
1. Choose two groups G1 and G2 of prime order p, an admissible pairing

e : G1 × G1 → G2 and a generator P ∈ G1;
2. randomly select the master secret s ∈ Z

∗
p and set Ppub = sP ;

3. select hash functions H1 : {0, 1}∗ → G
∗
1 and H2 : {0, 1}∗ × G2 → Z

∗
p;

4. params is 〈G1, G2, e, P, Ppub, H1, H2〉.
– PartialKeyGen.

1. Compute QA = H(IDA) ∈ G
∗
1;

2. output the partial private key DA = sQA ∈ G
∗
1.

– UserKeysGen.
1. Randomly select tA ∈ Z

∗
p;

2. compute the public key NA = 〈XA, YA〉, where XA = tAP and
YA = tAPpub = tAsP .

– CL-Sign.
1. Randomly choose r ∈ Z

∗
p and compute u = e(rP, P ) ∈ G2;

2. set h = H2(M, u) ∈ Z
∗
q ;

3. compute S = htADA + rP ∈ G1;
4. output the signature σ = 〈S, h〉.

– CL-Verify.
1. Check if e(XA, Ppub) = e(YA, P ). Else, abort and return reject;
2. compute u′ = e(S, P )e(QA, −YA)h;
3. if h = H2(M, u′) return accept. Else, return reject.
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Security Problems. In the original paper, no proof of security was given
for this scheme. We could easily devise a security argument using the oracle
replay technique, but since this scheme is not CL-generic, it would be invalid.
In [HSMZ05] a vulnerability against Type-I adversaries is shown. The proposed
attack exploits the fact that, even though the validity of the public key is checked
in step 1 of the verification procedure, there is no real assurance that the secret
value tA was indeed used in the computation of S. This allows a Type-I attacker
to guess a random “signature” and then compute the proper public key that will
make it valid. The attack proceeds as follows:

1. Select a random S ∈ G1;
2. compute u′ = e(S, P )(QA, −Ppub);
3. compute h = H2(M, u′);
4. let tA = h−1 (mod q);
5. compute XA = tAP and YA = tAPpub;
6. replace the user’s public key with NA = 〈XA, YA〉;
7. output σ = 〈S, h〉 as A’s signature on M .

This signature is clearly accepted by the verification procedure, as NA is a valid
public key, and

e(S, P )(QA, −YA)h = e(S, P )e(QA, −h−1Ppub)h = e(S, P )e(QA, −Ppub) = u′.

Making It Secure. With the above attack in mind, again in [HSMZ05], the
authors proposed a new version of the Al-Riyami/Paterson scheme that is se-
cure against Type-I adversaries. They argue that hashing the value e(tADA, P )
together with the message is enough to prevent Type-I attacks, and they give
a full security proof of this claim (using the replay technique). We make two
observations concerning this correction:

1. even though no justification was given for the use of the Forking Lemma in
this context, we claim that it is valid because this version of the scheme is
CL-generic;

2. thus, hashing the public key NA with the message is as secure as hashing
e(tADA, P ) (while avoiding a pairing computation).

These observations lead to the following CL-Sign and CL-Verify procedures:

– CL-Sign.
1. Randomly choose r ∈ Z

∗
p and compute u = e(rP, P ) ∈ G2;

2. Set h = H2(M, u, NA) ∈ Z
∗
p ;

3. Compute S = htADA + rP ∈ G1;
4. Output the signature σ = 〈S, h〉.

– CL-Verify.
1. Check if e(XA, Ppub) = e(YA, P ). Else, abort and return reject;
2. Compute u′ = e(S, P )e(QA, −YA)h;
3. If h = H2(M, u′, NA) return accept. Else, return reject.
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We claim this is enough to thwart Type-I attacks. Intuitively, the same argu-
ment given in [HSMZ05] is valid: since the public key is used in the computation
of h, the adversary cannot compute it after choosing S, r and h. More precisely,
the fact that this scheme is now CL-generic allows us to build a proof based
on the oracle replay technique. The complete proof (analogous to the one in
[HSMZ05]) is given in the appendix.

Lemma 2. Let AI be a Type-I Adversary that breaks our scheme in time T1
and with non-negligible probability ε1 under a given-ID attack. Let qS and qH2

be the maximum number of queries to, respectively, the Sign and IdentityHash
oracles. Assume that ε1 ≥ (10(qS + 1)(qS + qH2))/2k. Then, the GCDHP can
be solved within running time T ′

1 ≤ (120686qH1T1)/(ε1(1 − 1
2k )), where k is a

security parameter.

Proof. In the appendix.
Since both schemes from [ARP03] and [HSMZ05] are secure against Type-II
attacks, it is intuitive that our scheme is too. In fact, the proof given in [HSMZ05]
is easily adaptable to our scheme, as shown in the appendix.

Lemma 3. Let AII be a Type-II Adversary that breaks our scheme in time T2
and with non-negligible probability ε2 under a given-ID attack. Let qS and qH2

be the maximum number of queries to, respectively, the Sign and IdentityHash
oracles. Assume that ε2 ≥ (10(qS + 1)(qS + qH2))/2k. Then, the CDHP can
be solved within running time T ′

2 ≤ (120686qH2T2)/(ε2(1 − 1
2k )), where k is a

security parameter.

Proof. In the appendix.
This leads us to our main security claim.

Theorem 1. Our scheme is unforgeable in the random oracle model if both the
GBDHP and the CDHP are hard in G1.

Proof. In the appendix.

A Related CLS Scheme. In [LCS05] a CLS scheme is presented but no secu-
rity proof is given. It has many similarities with the original Al-Riyami/Paterson,
such as not being CL-generic and having a public-key sanity check (e(XA, Ppub)

?=
e(YA, P )) in the signature verification procedure. However, no attack has been
shown on this scheme. We make no claims regarding the security of the scheme
as is, but we claim that if the scheme is turned into CL-generic (by placing the
public-key in the message hash), a proof of security analogous to the above can
be easily devised.

5 A Summary of CL-Signature Schemes

In table 1 we present all (as far as our knowledge goes) certificateless signature
schemes proposed in the literature. We express the cost of each protocol by the
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Table 1. Rough performance comparison of certificateless signature schemes

Scheme Signing Cost Verification Cost Status

Al-Riyami & Paterson [ARP03] 1 4 Broken
Al-Riyami & Paterson 2 [HSMZ05] 2 5 OK

Al-Riyami & Paterson 3 (Our Version) 1 4 OK
Gorantla & Saxena [GS05] 0 2 Broken
Li, Chen & Sun [LCS05] 0 4 OK 3

Yap, Heng & Goi [YHG06] 0 2 Broken
Zhang et al. [ZWXF06] 0 4 OK
Goya & Terada [Goy06] 0 1 Broken

Liu, Au & Susilo [LAS06] 4 0 6 OK
Du & Wen [DW07] 0 1 Unknown5

Choi et al. - 1 [CPHL07] 0 1 Unknown5

Choi et al. - 2 [CPHL07] 0 2 Unknown5

number of pairing computations that must be done in the signing and verification
procedures. Note that this performance comparison is very rough, as we do not
take into account less costly but still not negligible operations such as hashing
to points on the curve or multiplying the results of pairings. In addition to the
schemes in table 1, the security mediated scheme from [YCHG07] can also be
transformed into an efficient CLS that does not depend on pairings.

6 Conclusion

In this paper we analyzed two common inaccuracies found in several security
proofs of certificateless signature (CLS) schemes. We exploited one of these in-
accuracies, namely the assumption that an adversary is able to compute a private
key matching a replaced public key, to show that the scheme from [Goy06] is
insecure against Type-I adversaries.

The second inaccuracy refers to the use of the Forking Lemma in security proofs
of CLS schemes. By redefining the scope of application of the Forking Lemma
in the CL realm, we produced new, provably secure, versions of the schemes in
[ARP03] and [LCS05]. Also, we were able to clarify the reasons for which the
scheme in [YHG06] was broken, while having been previously proved secure.

Acknowledgements

We would like to thank the anonymous referees for many constructive suggestions
on this text.
3 This scheme can be proven secure by using the results in this paper.
4 This is the only CLS scheme proven secure in the Standard Model, suffering from

the performance penalties that usually accompany such schemes.
5 These recently proposed schemes have security proofs with the misconception dis-

cussed in section 3. So, even though no attack has been proposed on them, we
consider their security unknown as of yet.
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A Proof of Security of Al-Riyami/Paterson-3

Notice that the proofs presented are closely related to the proofs in [HSMZ05].
The biggest difference is that we do not assume we can recover the secret key from
the adversary in Type-I attacks, following the recommendations from Section
3. First, we prove two lemmas concerning the security of the schemes under a
Given-ID attack. Then, we can use the lemma from [CC03] to reduce Chosen-ID
security to Given-ID security, thus proving the full security of the scheme.

Lemma 2. Let AI be a Type-I Adversary that breaks our scheme in time T1
and with non-negligible probability ε1. Let qS and qH2 be the maximum number
of queries to, respectively, the Sign and IdentityHash oracles. Assume that
ε1 ≥ (10(qS +1)(qS + qH2))/2k. Then, the GCDHP can be solved within running
time T ′

1 ≤ (120686qH2T1)/(ε1(1 − 1
2k )), where k is a security parameter.

http://eprint.iacr.org/
http://eprint.iacr.org/
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Proof. We construct a challenger algorithm CI that, on input (P, aP, bP ) ∈ G
3
1,

uses AI to solve the GCDHP. On the setup phase, CI sets P as the generator
of the group and sets Ppub ← aP . CI then randomly chooses the target identity
ID∗ and runs AI , answering oracle queries as follows:

ID-Hash Query[H1(IDi)].
1. Test whether IDi = ID∗:

• if IDi = ID∗ then Qi = H1(IDi) = bP , and yi = ⊥;
• else, generate a random yi and make Qi = H1(IDi) = yiP .

2. make Pi = xi = ⊥ and save the tuple (IDi, Qi, Pi, yi, xi);
3. finally, return Qi.

Partial Key Extraction(IDi).
1. Find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, or yi = ⊥, then CI aborts.
2. otherwise answer with DIDi = yiPpub = yi(aP ).

Note that AI is not allowed to request the partial key for ID∗.

Secret Value Extraction(IDi).
1. Find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, then CI aborts.
2. if the public key has been replaced, then CI aborts;
3. if xi = ⊥ (no secret value has been created yet), pick xi

R← Zp;
4. return xi.

Public Key Extraction(IDi).
1. Find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, yi = ⊥ or PIDi has been replaced, abort.
2. if xi = ⊥, execute Secret Value Extraction to generate a secret

value;
3. answer with PIDi = 〈xiP, xiPpub〉.

Public Key Replacement(IDi,P ′
i).

1. Find the tuple (IDi, Qi, Pi, xi);
• if it does not exist, CI aborts.

2. otherwise CI sets xi = ⊥ and Pi = P ′
i .

Message-Hash Query[H2(Mj,Rj,PIDj )].
1. If H2(Mj , Rj , PIDj ) is not yet defined:

• pick hj
R← Zp

• set H2(Mj , Rj , PIDj ) = hj .
2. Return H2(Mj , Rj , PIDj ).

Sign Query(IDi,Mj).
1. Find the tuple (IDi, Qi, 〈Xi, Yi〉, yi);

• If it does not exist, CI aborts.
2. pick Si

R← G1 and hj
R← Z

∗
q ;
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3. compute Ri = e(Si, P )e(H1(IDi), −Yi)hj

4. if H2(Mj, Rt, Yi) is defined, abort; else, set H2(Mj , Rt, Yi) = hj;
5. return the signature σ = (Si, hj).

Notice that the secret value of the user is not used by the Sign oracle, making
it a StrongSign oracle.
If CI does not abort, AI will output a valid forgery γ = 〈ID∗, m, S, h〉 with
probability ε1. The probability of CI aborting is 1

2k . Using the oracle replay
technique we obtain two valid signatures σ1 = 〈ID∗, m, S1, h1〉 and
σ2 = 〈ID∗, m, S2, h2〉 within time T ′

1 ≤ 120686qH1 T1

ε1(1− 1
2k ) . Since they are both valid

for the same value of U , we have that

U = e(S1, P )e(H1(ID∗), −Y ∗)h1 = e(S2, P )e(H1(ID∗), −Y ∗)h2

e(S1, P )e(bP, −x∗aP )h1 = e(S2, P )e(bP, −x∗aP )h2

e(S1 − S2, P ) = e(bP, −x∗aP )h2−h1

e(S1 − S2, P ) = e(−(h2 − h1)x∗abP, P )

Let W = (h2 − h1)(S1 − S2) = x∗abP . Remembering that Xi = x∗P , we have
that (Xi, W ) is a valid answer for our GCDHP instance. ��

Lemma 3. Let AII be a Type-II Adversary that breaks our scheme in time T2
and with non-negligible probability ε2. Let qS and qH2 be the maximum number
of queries to, respectively, the Sign and IdentityHash oracles. Assume that
ε2 ≥ (10(qS + 1)(qS + qH2))/2k. Then, the CDHP can be solved within running
time T ′

2 ≤ (120686qH2T2)/(ε2(1 − 1
2k )), where k is a security parameter.

Proof. We construct a challenger algorithm CII that, on input (P, aP, bP ) ∈ G
3
1,

uses AII to solve the CDHP. On the setup phase, CII sets P as the generator of
the group and chooses s

R← Z
∗
p, setting Ppub ← sP . CII then randomly chooses

the target identity ID∗ and runs AII , answering oracle queries as follows:

ID-Hash Query[H1(IDi)].
1. Test whether IDi = ID∗:

• if IDi = ID∗ then Qi = H1(IDi) = aP , and yi = ⊥;
• else, generate a random yi and make Qi = H1(IDi) = yiP .

2. make Pi = xi = ⊥ and save the tuple (IDi, Qi, Pi, yi, xi);
3. finally, return Qi.

Partial Key Extraction(IDi).
1. Find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, or yi = ⊥, then CII aborts.
2. otherwise answer with DIDi = sQi.

Note that AII is able to compute these by himself.

Secret Value Extraction(IDi).
1. If IDi = ID∗, then CII aborts.
2. find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, then CII aborts.
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3. if the public key has been replaced, then CII aborts;
4. if xi = ⊥ (no secret value has been created yet), pick xi

R← Zp;
5. return xi.

Public Key Extraction(IDi).
1. Find the tuple (IDi, Qi, Pi, yi, xi);

• if it does not exist, yi = ⊥ or PIDi has been replaced, abort.
2. if IDi = ID∗, then

• return PIDi = 〈bP, s(bP )〉
3. Else, if xi = ⊥, execute Secret Value Extraction to generate a

secret value;
4. return PIDi = 〈xiP, xiPpub〉.

Public Key Replacement(IDi,P ′
i).

1. If IDi = ID∗, CII aborts.
2. Find the tuple (IDi, Qi, Pi, xi);

• if it does not exist, CII aborts.
3. otherwise CII sets xi = ⊥ and Pi = P ′

i .

Message-Hash Query[H2(Mj,Rj,PIDj )].
1. If H2(Mj , Rj , PIDj ) is not yet defined:

• pick hj
R← Z

∗
p

• set H2(Mj , Rj , PIDj ) = hj .
2. Return H2(Mj , Rj , PIDj ).

Sign Query(IDi,Mj).
1. Find the tuple (IDi, Qi, 〈Xi, Yi〉, yi);

• If it does not exist, CII aborts.
2. pick Sj

R← G1 and hj
R← Z

∗
p;

3. compute Rj = e(Sj, P )e(H1(IDi), −Yi)hj

4. if H2(Mj, Rj , Yi) is defined, abort; else, set H2(Mj, Rj , Yi) = hj ;
5. return the signature σ = (Sj , hj).

Note that the secret value of the user is not used by the Sign oracle, making it
a StrongSign oracle. If CII does not abort, AII will output a valid forgery γ =
〈ID∗, m, S, h〉 with probability ε2. The probability of CII aborting is 1

2k . Using
the oracle replay technique we obtain two valid signatures σ1 = 〈ID∗, m, S1, h1〉
and σ2 = 〈ID∗, m, S2, h2〉 within time T ′

2 ≤ 120686qH1T2

ε2(1− 1
2k ) . Since they are both va-

lid (for the same value of U), we have that

U = e(S1, P )e(H1(ID∗), −Y ∗)h1 = e(S2, P )e(H1(ID∗), −Y ∗)h2

e(S1, P )e(aP, −s∗bP )h1 = e(S2, P )e(aP, −sbP )h2

e(S1 − S2, P ) = e(aP, −sbP )h2−h1

e(S1 − S2, P ) = e(−(h2 − h1)sabP, P )
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Let W = (h2 −h1)(S1 −S2)s−1 = abP . Then W is the answer of our CDHP ins-
tance. ��

From [CC03] we use the following lemma:

Lemma 4 (CL-Version). Let A be an adversary that makes at most qH id-
hash queries and (T, ε)-breaks an CL-PKS scheme. Let ID∗ be a randomly chosen
target ID.

There is an adversary A′ that (T ′, ε′)-breaks the scheme for the identity ID∗

for

T ≤ T ′, ε′ ≥
ε(1 − 1

2k )
qH

.

Theorem 4.2 is a corollary of lemmas 2, 3 and 4.
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Abstract. Ring signature is a kind of group-oriented signature. It allows
a member of a group to sign messages on behalf of the group without
revealing his/her identity. Certificateless public key cryptography was
first introduced by Al-Riyami and Paterson in Asiacrypt 2003. In cer-
tificateless cryptography, it does not require the use of certificates to
guarantee the authenticity of users’ public keys. Meanwhile, certificate-
less cryptography does not have the key escrow problem, which seems
to be inherent in the Identity-based cryptography. In this paper, we in-
troduce the notion of ring signature into certificateless public key cryp-
tography and propose a concrete certificateless ring signature scheme.
The security models of certificateless ring signature are also formalized.
Our new scheme is provably secure in the random oracle model, with the
assumption that the Computational Diffie-Hellman problem is hard.

Keywords: Ring Signature, Certificateless Cryptography, Provable
Security, Random Oracle model.

1 Introduction

In Asiacrypt 2001, Rivest, Shamir and Tauman [26] introduced the concept of
ring signature, which makes it possible to specify a set of possible signers without
revealing which member actually produced the signature. As pointed in [26], ring
signatures provide an elegant way to leak authoritative secrets in an anonymous
way, to sign casual email in a special way that can only be verified by its intended
recipient, anonymous membership authentication for ad hoc groups [6], etc. In
addition, ring signatures can also be served as the building block of concurrent
signatures and solve some other problems in multiparty computations.

Certificateless public key cryptography (CL-PKC) is a new paradigm proposed
by Al-Riyami and Paterson [2]. It enjoys the implicit certification property of
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identity based public key cryptography (ID-PKC) [27] while without suffering
from its inherent key escrow problem. Different from ID-PKC, a third party
which we call Key Generation Center (KGC) in CL-PKC does not have access
to a user’s private key. Instead, the KGC supplies a user with a partial private
key, which derives from the user’s identity. Then the user combines the partial
private key with some secret information chosen by himself to generate his actual
private key. The corresponding public key is computed from the system’s public
parameters and the secret information chosen by the user, and is published by
the user himself. Like ID-PKC, CL-PKC does not use public key certificates.
The KGC does not access the full private key of a user, hence, certificateless
cryptography does not suffer from the key escrow problem.

In this paper, we integrate the concept of ring signatures with certificateless
cryptography to give the notion of certificateless ring signatures (CL-Ring), and
investigate secure and efficient construction of CL-Ring schemes.

Motivations. Certificateless cryptography have some advantages over tradi-
tional PKC and ID-PKC in some aspects. As a useful primitive, ring signatures
have been studied in traditional PKC and ID-PKC for more than five years.
Even in a theoretic point of view, ring signatures should be studied in CL-PKC
to rich the theories and techniques of CL-PKC. In practice, to generate a ring
signature on behalf of a group in traditional PKC, the signer must first verify
all the certificates of the group members, otherwise his anonymity is jeopardized
and the ring signature will be rejected if he uses invalid certificates of some group
members. Given a ring signature, the verifier must perform the same verifica-
tion as well before checking the validity of the ring signature. These verifications
inevitably lead to the inefficiency of the whole scheme since the computational
cost increases linearly with the group size. Although Identity-based ring signa-
tures eliminate such costly verifications, they suffer from a security drawback
induced by the inherent key escrow problem of ID-PKC. Namely, a malicious
PKG can always issue valid ring signatures on behalf of any group. As CL-PKC
does not use public key certificates, and in the meantime, it removes the key
escrow problem of ID-PKC, we think it supplies an appropriate environment for
implementing ring signatures. So it is necessary to extend the notion and secu-
rity model of ring signatures to CL-PKC. Compared with ring signature schemes
in traditional PKC, in a CL-Ring scheme, both the signer and the verifier can
avoid the costly verification of group members’ certificates. On the other hand,
in contrast to ID-based ring signatures, the KGC can no longer forge a ring
signature on behalf of a group without being detected.

In application aspects, like ring signatures in traditional PKC and ID-PKC,
certificateless ring signatures can also be used in leaking authoritative secrets in
an anonymous way, anonymous membership authentication for ad hoc groups
[6], reports to the authorities embezzlement and corruption, certificateless des-
ignated signatures and concurrent signatures, etc.

Our Contributions. In this paper, we introduce the notion of ring signa-
ture into certificateless cryptography and propose a concrete certificateless ring
signature scheme.
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Firstly, we provide the security models of certificateless ring signatures. Two
types of adversaries: Type I adversary AI and Type II adversary AII are formally
defined. The above two adversaries in our definition are “super adversaries” as
defined in [19]. That is, the adversary can get valid ring signatures of the group
whose public keys have been replaced, without supplying the secret values that
are used to generate those public keys. In addition, our models also capture the
group-changing attack [24] in the notion of ring signatures.

Next, we present a concrete construction of certificateless ring signatures. The
new scheme uses the bilinear maps on elliptic curves. Its signing phase requires 2
pairings and its verification phase requires 3 pairings. We prove its security in the
random oracle model, with the assumption that Computational Diffie-Hellman
problem is intractable.

Related Works. Following the prior work of Rivest, Shamir and Tauman [26],
a number of constructions of ring signature in traditional PKC and ID-PKC
have been presented. Abe, Ohkubo, and Suzuki [1] provided a construction ap-
plicable for several categories of public keys (e.g., integer factoring based and
discrete-log based). A simple ring signature using bilinear maps was given in
[5]. Herranz and Saez [15] generalized the forking lemma to the ring signatures.
In [31], Zhang and Kim extended the concept to Identity-Based ring signature
(IDRS) schemes. Later Herranz and Saez [16], Chow et al. [9], Chow and D.
Wong [12] presented some efficient IDRS schemes respectively. In [10] Chow el
al. gave a solid and inspiring survey of Identity-Based ring signatures from a
number of perspectives. Some ring signature schemes with constant-size were
also presented in [13,25]. Threshold ring signatures were studied by Bresson et
al. [6] and Wong et al. [28]. Other variations of basic ring signatures such as
linkable ring signature [23], blind ring signatures [7] were also introduced.

In terms of security models for provably secure ring signature schemes, there
are three models commonly used. They provide different security levels. The
first and the weakest model was introduced by Rivest et al. [26]. Later Abe et
al. [1] proposed a very strong model. Finally, Liu and Wong [24] presented a
model whose security level is considered to be lying in between the two forego-
ing models. We mainly use the ideas of constructing IDRS schemes in [16], and
the security models of ring signatures in [24] in this paper.

CL-PKC has got fruitful achievements since its introduction in [2]. Al-Riyami
and Paterson presented [2] the first certificateless signature (CLS) scheme. Since
then, several CLS schemes [14,18,20,21,29,30,32] were proposed. In [20], Huang
et al. defined the security model of CLS schemes. Zhang et al. [32] improved the
security model of CLS schemes, and presented a secure CLS scheme. Generic
ways to construct CLS schemes were investigated in [30], [18]. In [21], a certifi-
cateless proxy signature scheme was proposed. A generic construction of CLE
secure in the standard model was given in [8], while [22] gave a specific con-
struction of CLE and the first CLS scheme secure in the standard model. These
constructions and their security proofs gave us some inspiration to our present
work on certificateless ring signature. Very recently, an independent work about
certificateless ring signature was done by Chow and Yap [11]. The security of
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their scheme is based on the hardness of the k-CAA problem and Modified In-
verse Computational Diffie-Hellman problem and is proved in a weak model that
requires a type I adversary to submit the secret values corresponding to the re-
placed public keys to the challenger in the sign queries. The computional cost of
their scheme involves a large amount of paring operations which linearly increase
with the number of group members. So far as we know, there is no certificate-
less ring signature (CL-Ring) scheme whose security is based on some classical
assumptions.

Organization. The rest of the paper is organized as follows. In the next section,
we review some preliminaries which are required in this paper. Section 3 defines
the security models in the notion of certificateless ring signatures. A concrete
construction of certificateless ring signature is proposed in Section 4. Its security
proofs are given in Section 5. Finally, Section 6 comes our conclusion.

2 Preliminaries

In this section, we will review some fundamental backgrounds required in this
paper.

2.1 Bilinear Maps and Computational Problems

Let G1 be an additive group of prime order q and G2 be a multiplicative group
of the same order. A mapping e : G1 × G1 −→ G2 is called a bilinear mapping
if it satisfies the following properties:

1. Bilinear: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Z∗
q .

2. Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) �= 1.
3. Computable: There exists an efficient algorithm to compute e(P, Q) for any

P, Q ∈ G1.

Discrete Logarithm (DL) Problem. Given a generator P of a cyclic additive
group G with order q, and Q ∈ G∗ to find an integer a ∈ Z∗

q such that Q = aP .
Computational Diffie-Hellman (CDH) Problem. Given a generator P of a
cyclic additive group G with order q, and given (aP, bP ) for unknown a, b ∈ Z∗

q ;
to compute abP .

2.2 The Concept of Certificateless Ring Signature Schemes

A CL-Ring scheme is defined by seven algorithms: Setup, Partial-Private-Key-
Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Ring-Sign and Verify.
The description of each algorithm is as follows.

– Setup: This algorithm takes as input a security parameter � to produce a
masterkey and a list of system parameters param.

– Partial-Private-Key-Extract: This algorithm takes as input a user’s identity
ID, a parameter list param and a masterkey to produce the user’s partial
private key DID.
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– Set-Secret-Value: This algorithm takes as input a parameter list param and
a user’s identity ID to produce the user’s secret value x.

– Set-Private-Key: This algorithm takes as input a parameter list param, a
user’s identity ID, the user’s partial private key DID and secret value x to
produce a private signing key SID for this user.

– Set-Public-Key: This algorithm takes as input a parameter list param, a user’s
identity ID and secret value xID to produce a public key PID for the user.

– Ring-Sign: This algorithm takes as input a message M ∈ M, M is the
message space, a set of n group members whose identities form the set
LID = {ID1, ..., IDn} and their corresponding public keys form the set
LPK = {PID1 , ..., PIDn}, a parameter list param and a signer’s signing key
SIDs to produce a ring signature σ. Here SIDs is the s-th group member’s
private key.

– Verify: This algorithm takes as input a message M , a ring signature σ, a
parameter list param, the set LID of the group members’ identities and the
set LPK of the corresponding public keys of the group members to output
True if the signature is correct, or False otherwise.

3 Security Models of Certificateless Ring Signature
Schemes

Due to the lack of certification in CL-PKC, it is conceivable that the adversary
can replace anyone’s public key of his choice. This key replacement attack is
also called Type I adversary in [2]. Obviously, a secure signature scheme in CL-
PKC must has the property that it is infeasible for Type I adversary to create
a valid signature under the false public key chosen by the adversary himself.
An assumption that must be made is that KGC does not mount a public key
replacement attack to a target user since he is armed with this user’s partial
private key. However, KGC might engage in other adversarial activities: eaves-
dropping on signatures and making signing queries, which is also known as Type
II Adversary. In this way, the level of trust is similar to the trust in a CA in a
traditional PKI.

Combining the security notions of certificateless public key cryptography and
security models of ring signature schemes in traditional PKC and ID-PKC, we
define the security of a CL-Ring scheme via the following two games between a
challenger C and an adversary AI or AII .

Game 1: Unforgeability of CL-Ring Against Type I Adversary AI

Setup: C runs the Setup algorithm, takes as input a security parameter � to
obtain a masterkey and the system parameters param. C then sends param to the
adversary AI while keeping the masterkey as secret. In addition, C will maintain
three lists L1, L2, L3 where

– L1 is used to record the identities which have been chosen by AI in the
Partial-Private-Key Queries.
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– L2 is used to record the identities whose public keys have been replaced by
AI .

– L3 is used to record the identities which have been chosen by AI in the
Private-Key Queries.

All these three lists L1, L2, L3 are the empty set ∅ at the beginning of the game.

Training: The adversary AI can adaptively issue a polynomially bounded num-
ber of queries as defined below:

– Partial-Private-Key Queries PPK(ID): AI can request the partial private key
of any user whose identity is ID. In respond,
1. C first resets L1 = L1 ∪ {ID}.
2. C then runs the algorithm Partial-Private-Key-Extract and outputs the

partial private key DID as answer.
– Public-Key Queries PK(ID): AI can request the public key of a user whose

identity is ID. In respond,

1. C first runs the algorithm Set-Secret-Value and obtains the secret value
xID.

2. C then runs the algorithm Set-Public-Key and obtains the public key PID.
C outputs the public key PID as answer.

– Public-Key-Replacement Queries PKR(ID, P ′
ID): For any user whose identity

is ID, AI can choose a new public key P ′
ID. AI then sets P ′

ID as the new
public key of this user and submits (ID, P ′

ID) to C. On receiving a query
PKR(ID, P ′

ID), C resets L2 = L2 ∪{ID} and updates the public key of this
user to the new value P ′

ID.
– Private-Key Queries PrK(ID): AI can request the private key of a user whose

identity is ID. In respond,
1. C first checks the set L2. If ID ∈ L2 (that is, the public key of the

user ID has been replaced), C will return the symbol ⊥ which means C
cannot output the private key of an identity whose public key has been
replaced.

2. Otherwise, ID /∈ L2 and C resets L3 = L3 ∪ {ID}. C then runs the
algorithm Set-Private-Key and outputs the private key SID as answer.

– Ring-Sign Queries RS(M, LID, LPK): AI can request the ring signature of a
message M on behalf of a group whose identities are listed in the set LID

and the corresponding public keys are in the set LPK . In respond, C outputs
a ring signature σ for the message M . It is required that the algorithm Verify
will output True for the input (M, σ, param, LID, LPK).

Forgery: Finally, AI outputs a tuple (M∗, σ∗, L∗
ID, L∗

PK) as the forgery. We say
AI wins the game if the forgery satisfies all the following requirements:

1. The algorithm Verify outputs True for the input (M∗, σ∗, param, L∗
ID, L∗

PK).
2. L∗

ID ∩ L1 ∩ L2 = ∅ and L∗
ID ∩ L3 = ∅.

3. (M∗, L∗
ID, L∗

PK) has never been queried during the Ring-Sign Queries.
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Game 2: Unforgeability of CL-Ring Against Type II Adversary AII

Setup: C runs the Setup algorithm, takes as input a security parameter � to
obtain the system parameter list param and also the system’s masterkey. C then
sends param and masterkey to the adversary AII . C will maintain two lists L1, L2
where

– L1 is used to record the identities whose public keys have been replaced by
AII .

– L2 is used to record the identities which have been chosen by AII in the
Private-Key Queries.

Both two lists L1, L2 are empty at the beginning of the game.

Training: As defined in Game 1, the type II adversary AII can issue a polyno-
mially bounded number of Public Key Queries, Private-Key Queries, Public-Key-
Replacement Queries and Ring-Sign Queries. C will answer those queries in the
same way as in Game 1. Note that AII does not need to issue Partial-Private-
Key queries because he has already known the system’s masterkey.

Forgery: Finally, AII outputs a tuple (M∗, σ∗, L∗
ID, L∗

PK) as the forgery. We say
AII wins the game if the forgery satisfies all the following requirements:

1. The algorithm Verify outputs True for the input (M∗, σ∗, param, L∗
ID, L∗

PK).
2. L∗

ID ∩ L1 = ∅ and L∗
ID ∩ L2 = ∅.

3. (M∗, L∗
ID, L∗

PK) has never been queried during the Ring-Sign Queries.

Definition 1. A CL-Ring scheme is existentially unforgeable under adaptively
chosen-message attack iff the success probability of any polynomially bounded
adversary in the above two games is negligible.

Definition 2. A CL-Ring scheme is said to have the unconditional signer
anonymity if for any group of n users whose identities form the set LID and
their corresponding public keys form the set LPK , any message M and any ring
signature σ =Ring-Sign(M, LID, LPK , SIDs), any verifier V (even the verifier
knows the private keys of all the group members) cannot identify the actual signer
with probability better than a random guess. That is, V can only output the actual
signer with probability no better than 1

n ( 1
n−1 when V is in the signers’ ring).

4 A Concrete Certificateless Ring Signatures Scheme

In this section, we will give the concrete construction of a certificateless ring
signature scheme. In our scheme, we employ some ideas of the certificateless
signature scheme in [32], the ID-based signature scheme in [17], and the ID-
based ring signature scheme in [16].
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4.1 Description of Our CL-Ring Scheme

Our CL-Ring scheme consists of the following algorithms:

– Setup: Given a security parameter �, the algorithm works as follows.
1. Specify G1, G2, e, as described in Section 2.1.
2. Arbitrarily choose a generator P ∈ G1 and set g = e(P, P ).
3. Choose a random masterkey κ ∈ Z∗

q and set P0 = κP .
4. Choose cryptographic hash functions H1 : {0,1}∗−→ G1, H2 : {0, 1}∗ −→

Z∗
q and H3 : {0, 1}∗ −→ G1.

The system parameters param=(G1, G2, e, P, g, P0, H1, H2, H3). The message
space is M= {0, 1}∗.

– Partial-Private-Key-Extract: This algorithm accepts param, masterkey and a
user’s identity IDi ∈ {0, 1}∗ to output the user’s partial private key Di =
κQi. Where Qi = H1(IDi).

– Set-Secret-Value: Given param, this algorithm selects a random xi ∈ Z∗
q as

the user’s (whose identity is IDi) secret value.
– Set-Private-Key: This algorithm takes as input param, a user’s identity IDi,

the user’s partial private key Di and the user’s secret value xi ∈ Z∗
q . The

output of the algorithm is the user’s private key Si = (xi, Di).
– Set-Public-Key: This algorithm accepts param, a user’s identity IDi and his

secret value xi ∈ Z∗
q to produce the user’s public key Pi = xiP .

– Ring-Sign: Suppose there’s a group of n users whose identities form the set
LID = {ID1, ..., IDn}, and their corresponding public keys form the set
LPK = {P1, ..., Pn}. To sign a message M ∈ M on behalf of the group, the
actual signer, indexed by s using the private key Ss = (xs, Ds), performs the
following steps.
1. For each i ∈ {1, ..., n}\{s}, select ri ∈ Z∗

q uniformly at random, compute
yi = gri .

2. Compute hi = H2(M ||LID||LPK ||yi) for all i ∈ {1, ..., n}\{s}.
3. Choose random rs ∈ Z∗

q , compute U =H3(M ||LID||LPK), ys =grse(−P0,∑
i�=s hiQi)e(−U,

∑
i�=s hiPi). If ys = 1G2 or ys = yi for some i �= s, then

redo this step.
4. Compute hs = H2(M ||LID||LPK ||ys).
5. Compute V = (

∑n
i=1 ri)P + hs(Ds + xsU).

6. Output the ring signature on M as σ = {(y1, ..., yn), V }.
– Verify: To verify a ring signature σ = {(y1, ..., yn), V } on a message M with

identities in LID and corresponding public keys in LPK , the verifier performs
the following steps.
1. Compute hi = H2(M ||LID||LPK ||yi) for all i ∈ {1, ..., n}, compute U =

H3(M ||LID||LPK).

2. Verify e(V, P ) ?= y1 · ... · yne(
∑n

i=1 hiQi, P0)e(
∑n

i=1 hiPi, U) holds with
equality.

3. Accept the ring signature as valid and output True if the above equation
holds, otherwise, output False.
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4.2 Efficiency

We only consider the costly operations including the pairing operation (Pairing),
scalar multiplication in G1 (G1 SM), exponentiation in G2 (G2 E) and MapTo-
Point hash operation [4] (Hash). The numbers of these operations in our scheme
are shown in Table 1.

Table 1. Table 1. Efficiency

Pairing G1 SM G2 E Hash

Sign 2 2n + 3 n n + 1

Verify 3 2n 0 n + 1

Total 5 4n + 3 n 2n + 2

Pairing operation is relatively time consuming. Our CL-Ring scheme only
requires 5 pairing operations which is independent of the group size. Note that we
use symmetric bilinear maps in our construction only for simplicity, asymmetric
ones can be applied with no doubt.

5 Analysis of the Proposed CL-Ring Scheme

In this section, we will analyze our proposed scheme in detail.

5.1 Correctness

The correctness of the proposed scheme can be easily verified with the following:

e(V, P ) = e((
n∑

i=1

ri)P + hs(Ds + xsU), P )

= e((
n∑

i=1

ri)P, P )e(hs(Ds + xsU), P )

= y1 · ... · yne(
∑
i�=s

hiQi, P0)e(
∑
i�=s

hiPi, U)e(hsDs, P )e(hsxsU, P )

= y1 · ... · yne(
∑
i�=s

hiQi, P0)e(
∑
i�=s

hiPi, U)e(hsQs, P0)e(hsPs, U)

= y1 · ... · yne(
n∑

i=1

hiQi, P0)e(
n∑

i=1

hiPi, U)

5.2 Unconditional Anonymity

Let σ = {(y1, ..., yn), V } be a valid ring signature of a message M on be-
half of a group of n members specified by identities in LID and public keys
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in LPK . Since all the ri, i ∈ {0, ..., n}\{s} are randomly generated, hence all
yi, i ∈ {0, ..., n}\{s} are also uniformly distributed. The randomness of rs cho-
sen by the signer implies ys = grse(−P0,

∑
i�=s hiQi)e(−U,

∑
i�=s hiPi) is also uni-

formly distributed. So (y1, ..., yn) in the signature reveals no information about
the signer.

It remains to consider whether V = (
∑n

i=1 ri)P + hs(Ds + xsU) leaks infor-
mation about the actual signer. From the construction of V , it is obvious to see
that Ds + xsU = h−1

s (V − (
∑n

i=1 ri)P ). To identify whether IDs is the identity

of the actual signer, the only way is to check e(Qs, P0)e(Ps, U) ?= e(Ds+xsU, P ).
Namely, e(Qs, P0)e(Ps, U) ?= e(h−1

s (V − (
∑n

i=1 ri)P ), P ). If IDs is the identity
of the actual signer, it should hold ys = grse(−P0,

∑
i�=s hiQi)e(−U,

∑
i�=s hiPi).

It remains to check

e(Qs, P0)e(Ps, U) ?= (
e(V, P )

y1 · ... · yne(P0,
∑

i�=s hsQs)e(U,
∑

i�=j hsPi)
)h−1

s

However,we have for each j ∈ {1, 2, ..., n}

(
e(V, P )

y1 · ... · yne(P0,
∑

i�=j hiQi)e(U,
∑

i�=j hiPi)
)h−1

j

= (
e(

∑n
i=1 ri)P + hs(Ds + xsU), P )

y1 · ... · yne(P0,
∑

i�=s hiQi)e(U,
∑

i�=s hiPi)e(hsQs, P0)e(hsPs, U)w
)h−1

j

= (
e((

∑n
i=1 ri)P, P )

e((
∑

i�=s ri)P, P )yse(P0,
∑

i�=s hiQi)e(U,
∑

i�=s hiPi)w
)h−1

j

= w−h−1
j = e(Qj , P0)e(Pj , U)

where w = e(−hjQj , P0)e(−hjPj , U), and IDs is the identity of the actual
signer. This fact shows that V in the signature does not leak any information
about the identity of the actual signer. And hence, the unconditional anonymity
of our CL-Ring scheme is proved.

As mentioned in [11], for real anonymity, the signer should obtain the “cor-
rect” copy of the public key that each member in the diversion group is using.
Otherwise, one can always repudiate being the signer of a certain ring signature
by demonstrating the ability to give a normal signature with the knowledge of
the private key that corresponding to a different public key. For how to guarantee
the correctness of the group members’ public keys, please refer to [11].

5.3 Unforgeability

Assuming that the CDH problem is hard, we now show the unforgeability of our
CL-Ring scheme.

Theorem 1. In the random oracle model [3], if AI can win Game 1, with an
advantage ε ≥ 7P

qH1
n /2� within a time span t for a security parameter �; and

asking at most qK Partial-Private-Key queries, at most qP Public-Key queries, at
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most qPr Private-Key queries, at most qH1 H1 queries, at most qH2 H2 queries,
at most qH3 H3 queries, qS Ring-Sign queries. Then the CDH problem in G1 can
be solved within time 2(t+qH1T1+qH2T2+qH3T3+qKTK+qP TP +qPrTPr+qSTS)
and with probability ≥ (( qK+qP r

qK+qP r+n )qK+qP r+n( n
qK+qP r+n )nε)2/66P

qH1
n , where n is

the group scale, P
qH1
n is defined as the number of n-permutations of qH1 elements

i.e. P
qH1
n = qH1 · ... · (qH1 −n+2) · (qH1 −n+1), T1 (resp. T2, T3, TK , TP , TPr and

TS) is the time cost of an H1 (resp. H2, H3, Partial-Private-Key, Public-Key,
Private-Key and Ring-Sign) query.

Proof. Let C be a CDH attacker, AI be a type I adversary of our CL-Ring scheme
who interacts with C following Game 1 and can forge a valid ring signature.
Suppose C receives a random instance (P, aP, bP ) of the CDH problem in G1.
We show how C can use AI to solve the CDH problem, i.e. to compute abP .

Setup: C first sets P0 = aP and selects param=(G1, G2, e, P, g, P0, H1, H2, H3),
then sends param to AI . We take hash functions H1, H2 and H3 as random
oracles.

Training: AI can ask C H1, H2, H3, Partial-Private-Key, Public-Key, Private-
Key, Public-Key-Replacement and Ring-Sign queries. In order to maintain con-
sistency and avoid conflict, C keeps four lists H1, H2, H3, and K to store
the answers used, where H1 includes items of the form (ID, α, QID, c), H2 in-
cludes items of the form (M, LID, LPK , y, h), H3 includes items of the form
(M, LID, LPK , β, U, c′′), and K includes items of the form (ID, x, DID, PID, c′).
All of these four lists are initially empty. C also maintains three lists L1, L2, L3,
the functions of these three lists are the same as mentioned in Game 1 in
Section 3.

H1 Queries : On receiving a query H1(ID), C does as follows.

1. If there exists an item (ID, α, QID, c) in H1, then C returns QID as answer.
2. Otherwise, C first flips a coin c ∈ {0, 1} that yields 0 with probability δ and

1 with probability 1 − δ (δ will be determined later), then picks a random
element α (has not been used before) in Z∗

q . If c = 0, C computes QID =
H1(ID) = αP ; if c = 1, it computes QID = H1(ID) = αbP . C then adds
(ID, α, QID, c) to H1 and returns QID as answer.

H2 Queries : On receiving a query H2(M ||LID||LPK ||y), C first checks if there
exists an item (M, LID, LPK , y, h) in H2, if so, returns h as answer. Otherwise,
C picks a random h ∈ Z∗

q which has not been used in the answers of the former
H2 Queries, then returns h as answer and adds (M, LID, LPK , y, h) to H2.

H3 Queries : On receiving a query H3(M ||LID||LPK), C first checks if there exists
an item (M, LID, LPK , β, U, c′′) in H3, if so, returns U as answer. Otherwise, C
first flips a coin c′′ ∈ {0, 1} that yields 0 with probability δ and 1 with probability
1 − δ then picks a random β ∈ Z∗

q which has not been used in the answers of
the former H3 Queries. If c′′ = 0, compute U = βP ; while c′′ = 1, compute
U = βbP . In both cases, C will add (M, LID, LPK , β, U, c′′) to H3 and return U
as answer.



114 L. Zhang, F. Zhang, and W. Wu

Partial-Private-Key Queries: Whenever C receives a query PPK(ID)

1. If there exists an item (ID, x, DID, PID, c′) in K, C does the following:
(a) If DID �= ⊥, C returns DID as answer.
(b) Else, if there exists an item (ID, α, QID, c) in H1, C sets L1 = L1∪{ID},

DID = αP0 and returns DID as answer when c = 0; while c = 1, C
aborts.

(c) Otherwise, C first makes an H1(ID) query to obtain an item(ID, α,QID,c).
If c = 1, C aborts; while c = 0, C sets L1 = L1 ∪ {ID}, DID = αP0 and
returns DID as answer.

2. Otherwise C does the following:
(a) If there exists an item (ID, α, QID, c) in H1, C sets L1 = L1 ∪ {ID},

computes DID = αP0, sets x = ⊥, PID = ⊥, adds (ID, x, DID, PID, c′)
to K and returns DID as answer when c = 0; while c = 1, C aborts.

(b) Otherwise, C first makes an H1(ID) query to obtain an item(ID, α,QID,c)
in H1, then proceeds as in (a).

Public-Key Queries: Whenever C receives a query PK(ID)

1. If there exists an item (ID, x, DID, PID, c′) in K, C does the following:
(a) If PID �= ⊥, C returns PID as answer;
(b) Otherwise, C first flips a coin c′ ∈ {0, 1} that yields 0 with probability

δ and 1 with probability 1 − δ, then picks a random x ∈ Z∗
q . If c′ = 0,

C sets PID = xP ; if c = 1, it computes PID = xaP . C then updates
(ID, x, DID, PID, c′) with new values and returns PID as answer.

2. Otherwise, C first flips a coin c′ ∈ {0, 1} that yields 0 with probability δ
and 1 with probability 1 − δ, then picks a random x ∈ Z∗

q . If c′ = 0, C
sets PID = xP ; otherwise, it computes PID = xaP . C then sets DID = ⊥,
returns PID as answer and adds (ID, x, DID, PID, c′) to K.

Public-Key-Replacement Queries: On receiving a query PKR(ID, P ′
ID) (C sets

L2 = L2∪{ID}), C first makes a PPK(ID) query to obtain an item (ID, x, DID,
PID, c′), then sets x = ⊥, PID = P ′

ID, and updates the item (ID, x, DID, PID, c′)
in K to record this replacement.

Private-Key Queries : Whenever receives a query PrK(ID), if ID ∈ L2, C re-
turns ⊥, otherwise

1. When there exists an item (ID, x, DID, PID, c′) in K
(a) If x = ⊥, C first makes a PK(ID) query. If c′ �= 1, C sets L3 = L3∪{ID},

returns (x, DID) as answer; otherwise C aborts.
(b) Else if DID = ⊥, C first makes a PPK(ID) query, if C does not abort

and c′ �= 1, C sets L3 = L3 ∪ {ID} and returns (x, DID) as answer.
Otherwise C aborts.

(c) Otherwise, when c′ = 1 C aborts, while c′ = 0 C sets L3 = L3 ∪ {ID}
and returns (x, DID) as answer.

2. Otherwise, C first makes PK(ID) and PPK(ID) queries. If C does not abort
and c′ �= 1, then sets L3 = L3 ∪ {ID}, returns (x, DID) as answer and adds
(ID, x, DID, PID, c′) to K; otherwise, C aborts.
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Ring-Sign Queries : AI chooses a group of n users whose identities form the
set LID = {ID1, ..., IDn} and their corresponding public keys form the set
LPK = {P1, ..., Pn}, and may ask a ring signature on a message M of this group.
On receiving a Ring-Sign query RS(M, LID, LPK), C creates a ring signature as
follows:

1. Choose a random index s ∈ {1, ..., n}.
2. For all i ∈ {1, ..., n}\{s}, choose ri ∈ Z∗

q uniformly at random, compute
yi = gri .

3. For all i ∈ {1, ..., n}\{s}, compute hi = H2(M ||LID||LPK ||yi).
4. Choose hs ∈ Z∗

q , V ∈ G1 at random.
5. Compute ys = e(V − (

∑
i�=s ri)P, P )e(

∑n
i=1 hiQi, −P0)e(

∑n
i=1 hiPi, −U),

where U = H3(M || LID||LPK), Qi = H1(IDi). If ys = 1G2 or ys = yi

for some i �= s, then goto step 4.
6. Set H2(M ||LID||LPK ||ys) = hs.
7. Return (M, LID, LPK , σ = ((y1, ..., yn), V )) as answer.

Forgery: Finally, AI outputs a tuple (M∗, L∗
ID = {ID∗

1 , ..., ID∗
n}, L∗

PK ={P ∗
1 , ...,

P ∗
n}, σ∗ = ((y∗

1 , ..., y∗
n), V ∗)) which means σ∗ is a ring signature on message M∗

on behalf of the group specified by identities in L∗
ID and the corresponding

public keys in L∗
PK . It is required that C does not know the private key of any

member in this group, L∗
ID ∩ ((L1 ∩ L2) ∪ L3) = ∅ and the ring signature σ∗

on message M∗ on behalf of the group must be valid (Event 1). Now, applying
the ‘ring forking lemma’ [16], if AI succeeds in outputting a valid ring signature
σ∗ with probability ε ≥ 7P

qH1
n /2� in a time span t in the above interaction,

then within time 2t and probability ≥ ε2/66P
qH1
n , C can get two valid ring

signatures (M∗, L∗
ID, L∗

PK , σ∗ = ((y∗
1 , ..., y∗

n), V ∗)) and (M∗, L∗
ID, L∗

PK , σ′∗ =
((y∗

1 , ..., y∗
n), V ′∗)). From these two valid ring signatures, C obtains

e(V ∗, P ) = y∗
1 · ... · y∗

ne(
n∑

i=1

h∗
i P

∗
i , U∗)e(

n∑
i=1

h∗
i Q

∗
i , P0)

and

e(V ′∗, P ) = y∗
1 · ... · y∗

ne(
n∑

i=1

h′∗
i P ∗

i , U∗)e(
n∑

i=1

h′∗
i Q∗

i , P0)

Where U∗ = H3(M∗||L∗
ID||L∗

PK), Q∗
i = H1(ID∗

i ), h∗
i = H2(M∗, L∗

ID, L∗
PK , y∗

i ),
h′∗

i = H ′
2(M

∗, L∗
ID, L∗

PK , y∗
i ), and for some s ∈ {1, ..., n}, h∗

s �= h′∗
s , while for

i ∈ {1, ..., n}\{s}, h∗
i = h′∗

i . From the above two equations we have

e(V ∗ − V ′∗, P ) = e((h∗
s − h′∗

s )P ∗
s , U∗)e((h∗

s − h′∗
s )Q∗

s, P0)

At this stage, C may find the item (M∗, L∗
ID, L∗

PK , β∗, U∗, c′′∗) from H3,
(ID∗

s , α∗
s , Q

∗
s, c

∗
s) from H1, (ID∗

s , x∗
s, D

∗
s , P ∗

s , c′∗s) from K. There are three cases
in which C can successfully solve the CDH problem.

– Case 1: c∗s = 1, c′′∗ = 0, this means Q∗
s = α∗

sbP, U∗ = β∗P . In this case,
e(V ∗ − V ′∗, P ) = e((h∗

s − h′∗
s )(β∗P ∗

s + α∗
sabP ), P ). So, C can get abP =

α∗
s
−1((h − h′)−1(V ∗ − V ′∗) − β∗P ∗

s ).
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– Case 2: c′∗s = 1, c′′∗ = 1, c∗s = 0, x∗
s �= ⊥, and P ∗

s = x∗
saP, U∗ = β∗bP, Q∗

s =
α∗

sP , C can get abP = (x∗
sβ

∗)−1((h − h′)−1(V ∗ − V ′∗) − α∗
sP0).

– Case 3: c′∗s = 1, c′′∗ = 1, c∗s = 1, x∗
s �= ⊥, and P ∗

s = x∗
saP, U∗ = β∗bP, Q∗

s =
α∗

sbP , C can get abP = (x∗
sβ

∗ + α∗
s)−1(h − h′)−1(V ∗ − V ′∗) (Note the prob-

ability that x∗
sβ

∗ + α∗
s = 0 is negligible).

Probability of Success : Now we determine the value of δ and consider the proba-
bility for C to successfully solve the given CDH problem. The probability that C
does not abort in all the qK Partial-Private-Key Queries and qPr Private-Key
Queries is at least δqK+qP r . The probability that the forged ring signature is help-
ful for C to solve the CDH problem is Pr[(Case1∨Case2∨Case3)∧Event 1]≤
(1 − δ)n. So the combined probability is δqK+qP r(1 − δ)n. We can find the value
of δ that maximize this probability is qK+qP r

qK+qP r+n and the maximized probability
is ( qK+qP r

qK+qP r+n )qK+qP r( n
qK+qP r+n )n.

Based on the bound from the ring forking lemma [16], if AI succeeds in time
≤ t with probability ε ≥ 7P

qH1
n /2�, then the CDH problem in G1 can be solved

by C within time 2(t+ qH1T1 + qH2T2 + qH3T3 + qKTK + qP TP + qPrTPr + qSTS)
and with probability ≥ (( qK+qP r

qK+qP r+n )qK+qP r · ( n
qK+qP r+n )nε)2/66P

qH1
n .

Theorem 2. In the random oracle model, if AII can win the Game 2, with
an advantage ε ≥ 7P

qH1
n /2� within a time span t for a security parameter �;

and asking at most qP Public-Key queries, at most qK Private-Key queries, at
most qH1 H1 queries, at most qH2 H2 queries, at most qH3 H3 queries, at most
qS Ring-Sign queries. Then the CDH problem in G1 can be solved within time
2(t + qH1T1 + qH2T2 + qH3T3 + qKTPr + qP TP + qSTS) and with probability
≥ (( qK

qK+n )qK+n( n
qK+n )nε)2/66P

qH1
n .

Proof. Let AII be our type II adversary, C be a CDH attacker who receives a
random instance (P, aP, bP ) and has to compute the value of abP .

Setup: C generates the KGC’s masterkey κ ∈ Z∗
q and the system parameters

param=(G1, G2, e, P, g, P0, H1, H2, H3). When the simulation is started, AII is
provided with param and the masterkey κ.

Training: AII can ask C H1, H2, H3, Public-Key, Private-Key, and Ring-Sign
queries. Since AII has access to the masterkey κ, he can do Partial-Private-Key-
Extract himself. C also maintains four lists, namely H1 contains items of the
form (ID, QID), H2 contains items of the form (M, LID, LPK , y, h), H3 con-
tains items of the form (M, LID, LPK , β, U) and K contains items of the form
(ID, x, PID) to store the answers used. All of these four lists are initially empty.
C also maintains two lists L1, L2, the functions of these two lists are the same
as mentioned in Game 2 in Section 3.

H1 Queries : On receiving a query H1(ID). If (ID, QID) exists in H1, C returns
QID as answer. Otherwise, C picks a random QID ∈ G∗

1 which has not been
used in the former H1 Queries, then returns QID as answer and adds (ID, QID)
to H1.
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H2 Queries : On receiving a query H2(M ||LID||LPK ||y), C first checks whether
there exists an item (M, LID, LPK , y, h) in H2, if so, returns h as answer. Oth-
erwise, C picks a random h ∈ Z∗

q which has not been used in the former H2
Queries, then returns h as answer and adds (M, LID, LPK , y, h) to H2.

H3 Queries : Whenever receives a queryH3(M ||LID||LPK), C first checks whether
there exists an item (M, LID, LPK , β, U) in H3, if so, returns U as answer.
Otherwise, C picks a random β ∈ Z∗

q which has not been used in the former H3
Queries, computes U = βaP , then adds (M, LID, LPK , β, U) to H3 and returns
U as answer.

Public-Key Queries: On receiving a query PK(ID)

1. If there is an item (ID, x, PID, c) exists in K, then C returns PID as answer.
2. Otherwise, C first flips a coin c ∈ {0, 1} that yields 0 with probability δ

and 1 with probability 1 − δ, then picks a random x ∈ Z∗
q . If c = 0, C sets

PID = xP , returns PID as answer and adds (ID, x, PID, c) to K. If c = 1, C
sets PID = xbP , returns PID as answer and adds (ID, x, PID, c) to K.

Public-Key-Replacement Queries: On receiving a query PKR(ID, P ′
ID), C sets

L1 = L1∪{ID}, and makes a PPK(ID) query to obtain an item (ID, x, PID, c),
then sets x = ⊥, PID = P ′

ID, and updates the item (ID, x, PID, c) in K to record
this replacement.

Private-Key Queries : On receiving a query PrK(ID), if ID ∈ L1, C returns ⊥,
otherwise

1. If there is an item (ID, x, PID, c) in K, and c = 0 C sets L2 = L2 ∪ {ID},
returns (x, DID) as answer (where DID = κH1(ID) is the partial private
key of the user whose identity is ID); while c = 1, C aborts.

2. Otherwise, C first makes a PK(ID) query to obtain an item (ID, x, PID, c)
in K. If c = 0, C sets L2 = L2 ∪ {ID}, returns (x, DID) as answer; while
c = 1, C aborts.

Ring-Sign Queries : AII chooses a group of n users whose identities form the
set LID = {ID1, ..., IDn} and their corresponding public keys form the set
LPK = {P1, ..., Pn}. On receiving a Ring-Sign query RS(M, LID, LPK), C creates
a ring signature as follows:

1. Choose a random index s ∈ {1, ..., n};
2. For all i ∈ {1, ..., n}\{s}, choose ri ∈ Z∗

q uniformly at random, compute
yi = gri .

3. For all i ∈ {1, ..., n}\{s}, set hi = H2(M ||LID||LPK ||yi).
4. Randomly choose hs ∈ Z∗

q , V ∈ G1.
5. Compute ys = e(V − (

∑
i�=s ri)P, P )e(

∑n
i=1 hiQi, −P0)e(

∑n
i=1 hiPi, −U),

where U = H3(M || LID||LPK), Qi = H1(IDi). If ys = 1G2 or ys = yi

for some i �= s, then goto step 4.
6. Set H2(M ||LID||LPK ||ys) = hs.
7. Return (M, LID, LPK , σ = ((y1, ..., yn), V )) as answer.
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Forgery: Finally, AII outputs a tuple (M∗, L∗
ID = {ID∗

1, ..., ID∗
n}, L∗

PK = {P ∗
1 ,

..., P ∗
n}, σ∗ = ((y∗

1 , ..., y∗
n), V ∗)) which implies that σ∗ is a ring signature on mes-

sage M∗ on behalf of the group specified by identities in L∗
ID and the correspond-

ing public keys in L∗
PK . It is required that (M∗, σ∗) is a valid message and ring

signature pair, L∗
ID ∩ (L1 ∪ L2) = ∅ and C does not know the private key of any

member in the group specified by L∗
ID and L∗

PK (Event 1). Now, Applying the
‘ring forking lemma’ [16], C gets two valid ring signatures (M∗, L∗

ID, L∗
PK , σ∗ =

((y∗
1 , ..., y∗

n), V ∗)) and (M∗, L∗
ID, L∗

PK , σ′∗ = ((y∗
1 , ..., y∗

n), V ′∗)). From these two
ring signatures, C obtains

e(V ∗, P ) = y∗
1 · ... · y∗

ne(
n∑

i=1

h∗
i P

∗
i , U∗)e(

n∑
i=1

h∗
i Q

∗
i , P0)

and

e(V ′∗, P ) = y∗
1 · ... · y∗

ne(
n∑

i=1

h′∗
i P ∗

i , U∗)e(
n∑

i=1

h′∗
i Q∗

i , P0)

where U∗ = H3(M∗||L∗
ID||L∗

PK), Q∗
i = H(ID∗

i ), h∗
i = H2(M∗, L∗

ID, L∗
PK , y∗

i )
and h′∗

i = H ′
2(M

∗, L∗
ID, L∗

PK , y∗
i ). The hash functions H2 and H ′

2 satisfy: for
some s ∈ {1, ..., n}, h∗

s �= h′∗
s , while i ∈ {1, ..., n}\{s}, h∗

i = h′∗
i . From the above

two equations we have

e(V ∗ − V ′∗, P ) = e((h∗
s − h′∗

s )P ∗
s , U∗)e((h∗

s − h′∗
s )Q∗

s, P0)

At this point, C may find the item (M∗, L∗
ID, L∗

PK , β∗, U∗) from H3, (ID∗
s , Q∗

s)
from H1 and (ID∗

s , x∗
s , P

∗
s , c∗) from K. Since U∗ = β∗aP, P ∗

s = x∗
sbP , C has the

following
e(V ∗ − V ′∗, P ) = e((h∗

s − h′∗
s )(x∗

sβ
∗abP + κQ∗

s), P )

This implies

V ∗ − V ′∗ = (h∗
s − h′∗

s )(x∗
sβ∗abP + κQ∗

s)

Hence, C can obtain abP = (x∗
sβ

∗)−1((h∗
s − h′∗

s )−1(V ∗ − V ′∗) − κQ∗
s).

Probability of Success : Now we determine the value of δ and consider the prob-
ability for C to successfully solve the given CDH problem. The probability that
C does not abort in all the qK Private-Key Queries is δqK . The probability that
AII forged a valid ring signature which C does not know any private key of the
group members’ involved in the ring signature is (1−δ)n. So the combined prob-
ability (Pr[Event 1]) is δqK (1 − δ)n. We can find the value of δ that maximize
this probability is qK

qK+n and the maximized probability is ( qK

qK+n )qK ( n
qK+n )n.

Based on the bound from the ring forking lemma [16], if AII succeeds in time
≤ t with probability ε ≥ 7P

qH1
n /2�, then the CDH problem in G1 can be solved

by C within time 2(t+ qH1T1 + qH2T2 + qH3T3 + qKTPr + qP TP + qSTS) and with
probability ≥ (( qK

qK+n )qK ( n
qK+n )nε)2/66P

qH1
n .
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6 Conclusion

The notion and security models of certificateless ring signatures are formalized.
The models capture the essence of the possible adversaries in the notion of certifi-
cateless system and ring signatures. A concrete construction of certificateless ring
signature scheme from the bilinear maps is presented. The unforgeability of our
CL-Ring scheme is proved in the random oracle model based on the hardness of
Computational Diffie-Hellman problem. Our CL-Ring scheme is computationally
efficient in that it just needs 5 pairing operations in its signing and verification
phases. We note that CL-Ring schemes may be more efficient than ring signature
schemes in traditional PKC since they avoid the costly computation for the veri-
fication of the public key certificates of the group members. And no key escrow in
CL-PKC makes it impossible for the KGC to forge any valid ring signatures.
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Abstract. Since 1985 and their introduction by Goldwasser, Micali and
Rackoff, followed in 1988 by Feige, Fiat and Shamir, zero-knowledge
proofs of knowledge have become a central tool in modern cryptography.
Many articles use them as building blocks to construct more complex
protocols, for which security is often hard to prove. The aim of this
paper is to simplify analysis of many of these protocols, by providing
the cryptographers with a theorem which will save them from stating
explicit security proofs. Kiayias, Tsiounis and Yung made a first step
in this direction at Eurocrypt’04, but they only addressed the case of
so-called “triangular set of discrete-log relations”. By generalizing their
result to any set of discrete-log relations, we greatly extend the range of
protocols it can be applied to.

1 Introduction

The main purpose of authentication is to know who is who. More precisely,
Alice wants to be convinced that the entity she communicates with is the right
one. When using cryptography, this is often achieved by proving knowledge of a
particular secret without (provably) revealing it. In 1985, Goldwasser, Micali and
Rackoff [19] introduced the concept of zero-knowledge interactive proofs (ZKIP).
The idea of using it for purposes of authentication came one year later in the
article by Fiat and Shamir [15], followed in 1988 by Feige, Fiat and Shamir [14],
who introduced the zero-knowledge proofs of knowledge (ZKPK).

In modern cryptography, these protocols are not only used for authentication
but also as building blocks to achieve more complex purposes, such as for example
guaranteeing the anonymity of a user [1,5,9] or committing to a secret value
without being able to change one’s mind [16]. In these schemes, users typically
have to compute some public data relying on secret and random values, then
prove that these public data are well-formed by using these building blocks.
The security of the global construction relies both on the computed data and
protocols they are involved in, which consequently have to be proven as being
ZKPK.

The aim of this paper is to simplify analysis of many of these protocols, by pro-
viding the cryptographers with a theorem which will save them from stating ex-
plicit security proofs. Kiayias, Tsiounis and Yung made a first step in this direction
at Eurocrypt’04, but they only addressed the case of so-called “triangular set of
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discrete-log relations”. By generalizing their result to any set of discrete-log rela-
tions, we greatly extend the range of protocols it can be applied to.

1.1 Related Work

Many ZKPK have been proposed since the article of Feige et al. in 1988 [14].
When based on discrete logarithms, they are often built over a cyclic group
G = 〈g〉 either of known prime order q (after Schnorr’s article [22]) or of unknown
order (but in the same range of magnitude as the order of G). In this paper, we
will only consider discrete-logarithm based ZKPK in groups of unknown order,
since this is the most difficult case. In this setting, the building block is the
GPS authentication scheme [18], which allows to prove knowledge of a discrete
logarithm in such groups.

The construction of complex cryptographic tools such as group signature
schemes, credential schemes or e-cash systems, always requires more than a sin-
gle proof of knowledge of a single discrete logarithm. Rather, it involves several
secret values and several (discrete-log based) relations between these values. The
GPS scheme has therefore to be extended in order to obtain first new building
blocks as e.g. a proof of knowledge of a representation [16,13], that involves
two secret values and one relation, a proof of equality of two known represen-
tations [11,7], which requires four secret values and two relations, or the proof
that a committed value lies in an interval [4,7,10,3], that necessitates several
secret values and relations. Then, these various building blocks are used to con-
struct still more elaborate protocols, the security of which must be demonstrated
in detail for each of them, though the proofs are very similar to each other.
As a consequence, it would be very useful to design a “general proof” which
could apply to a wide range of such protocols, saving the designers from proving
them secure.

Kiayias, Tsiounis and Yung [20] use such complex protocols in their construc-
tion of traceable signatures and, as an independent interest of the paper, make
a first step towards designing such a general proof. They introduce the notion
of Discrete-Log Relation Set (DLRS), that is a set of relations involving objects
(as public keys and parameters) and free variables (as secret elements). For each
free variable, there is a corresponding secret known by a prover P . Then they
propose a generic 3-move honest verifier zero-knowledge proof that allows P to
prove the knowledge of these values. They also show that their construction is
a ZKPK in the particular case of a triangular discrete-log relation set, that is
when each relation introduces at most one new free variable w.r.t. the previous
ones. They thus solve the above problem only in part, since their security proof
only addresses a particular case. The aim of our paper is to solve this problem
in general, for any discrete-log relation set.

1.2 Our Contribution

In this paper, we prove the soundness of any discrete-log relation set (DLRS),
as defined by Kiayas, Tsiounis and Yung [20], i.e. when G is a (large) subgroup
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of the multiplicative group of the ring of integers modulo a composite integer.
We do not address the zero-knowledge property, since it happens that it can be
derived from [20] in a straight-forward manner. Unlike in [20], we do not have
any restrictions on the kind of DLRS we use.

All security proofs for a ZKPK in a group of unknown order use the trick of
either solving the Flexible RSA problem or retrieving all secret values involved
in the proof1. Another contribution of this paper is that, to the best of our
knowledge, our proof is the first one where the instance of the Flexible RSA
problem is clearly defined.

1.3 Organization of the Paper

We first give some preliminaries in the next section. Section 3 introduces the
first results on DLRS. It also gives evidence that the model of Kiayias et al.
does not cover all kind of DLRS. We then give our new theorem and its proof
in Section 4, then conclude in Section 5.

2 Preliminaries

In the following, G will be typically a group QR(n) of quadratic residues mod-
ulo n, where n is a safe RSA modulus, as defined in the next subsection. By
definition, the group G is a group of possibly unknown order but where the size
of the group order, denoted by lG, is known.

2.1 Mathematical Background

A prime p is a safe prime when p = 2p′+1 and p′ is a prime. A safe RSA modulus
n is an integer which is the product of two distinct safe primes p = 2p′ + 1 and
q = 2q′ + 1, that is n = pq. The following technical lemma (see e.g. [17]) will be
useful.

Lemma 1. Let n = pq, where p < q, p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′

are all prime numbers. Then,

1. The order of elements in Z
∗
n is in {1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}.

2. Given an element w ∈ Z
∗
n \ {−1, 1} such that ord(w) < p′q′, then either

gcd(w − 1, n) or gcd(w + 1, n) is a prime factor of n.

As a consequence of the above lemma, any value found by a party that does not
know (and cannot compute) the factorization of n must be of order at least p′q′

in Z
∗
n (except for −1 and 1).

Lemma 2. Let n = pq, where p < q, p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′

are all prime numbers.
If ν2 = 1 and ν ∈ QR(n) then ν = 1.

1 This is not the case for group of prime order.
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Proof. As a safe modulus, n is also a Blum number (a product of two primes
equal to 3mod4). As a consequence, any element of QR(n) has exactly one square
root in QR(n). Since 1 is in QR(n), 1 is the only square root of 1 in QR(n).

2.2 Number Theoretic Assumption

The security of discrete-logarithm based zero-knowledge proofs of knowledge in
groups of unknown order relies on the Flexible RSA assumption (independently
introduced by Barić and Pfitzmann [2] and by Fujisaki and Okamoto [16], also
known as Strong RSA). This assumption can be stated as follows, restricted to
safe modulus, as it is the case in our paper.

Assumption 1 (Flexible RSA). Given a safe RSA modulus n and Γ ∈QR(n),
it is infeasible to find u ∈ Z

∗
n and e ∈ Z>1 such that ue = Γ (mod n), in time

polynomial in �log p′q′� with a non-negligible probability.

2.3 Zero-Knowledge Proofs of Knowledge

The notion of interactive zero-knowledge proof of knowledge has been formal-
ized by Feige, Fiat and Shamir [14]. As in [20], we only consider honest verifier
zero-knowledge since this is always the considered setting in studied complex
constructions. Let us give the following (informal) definition.

Definition 1. An interactive protocol between a prover P and a verifier V, that
takes on input Y, is a zero-knowledge proof of knowledge of a secret x if the three
following properties are verified.

– Completeness: given an honest prover P and an honest verifier V, the pro-
tocol succeeds with overwhelming probability.

– Soundness: given a dishonest prover P̃ that is accepted by a verifier V with
non-negligible probability, it is possible to construct a probabilistic polynomial
time Turing machine M that can find x by interacting with P̃.

– (Honest verifier) zero-knowledge: it exists a probabilistic polynomial-time
Turing machine that takes on input Y and which can simulate the com-
munications between an honest prover P and an honest verifier V such that
these simulated communications are indistinguishable from those between a
real prover P and a real honest verifier V.

3 First Result on DLRS

Discrete-log relation sets (DLRS) were introduced by Kiayias et al. [20], and are
useful when constructing complex proofs of knowledge for protocols operating
over any group, even of unknown order. These constructions are quite useful in
many complex cryptographic protocols [16,1,5,9].



126 S. Canard, I. Coisel, and J. Traoré

3.1 Introduction of the Concept of DLRS

The following definition of a DLRS has been proposed in [20]:

Definition 2. (see [20]) Let G be a finite group. A discrete-log relation set R
with z relations over r variables and m objects is a set of relations defined over
the objects A1, . . . , Am ∈ G and the free variables α1, . . . , αr with the following
specifications:

1. the i-th relation in the set R is specified by a tuple 〈ai
1, . . . , a

i
m〉 so that each

ai
j is selected to be one of the free variables {α1 . . . , αr} or an element of Z.

The relation is to be interpreted as
∏m

j=1 A
ai

j

j = 1.
2. every free variable αω is assumed to take values in a finite integer range

]2lω − 2μω , 2lω + 2μω [ where lω, μω ≥ 0.

We will write R(α1, . . . , αr) to denote the conjunction of all relations
∏m

j=1 A
ai

j

j

= 1 that are included in R.

Notation. The following notation will be used for the rest of the article. For
the i-th relation, we define for each free variable αω (ω ∈ {1, . . . , r}) the set
Jω,i ⊆ {1, . . . , m} of the variable’s locations in the tuple 〈ai

1, . . . , a
i
m〉. If a free

variable αω is not contained in the relation i, the set Jω,i is empty. We also set
Ji =

⋃r
ω=1 Jω,i. Note that j /∈ Ji means ai

j ∈ Z. Finally, for all ω = 1, . . . , r, let
us denote Ãω,i =

∏
j∈Jω,i

Aj . Naturally, if Jω,i = φ then Ãω,i = 1. Consequently,
the i-th relation verifies the following relation.

m∏
j=1

A
ai

j

j = 1 ⇔
r∏

ω=1

Ãαω

ω,i

∏
j /∈Ji

A
ai

j

j = 1

∀ω ∈ {1, . . . , r}, sω
?
∈ ±{0, 1}ε(μω+k)+1

P V

∀ω ∈ {1, · · · , r}, rω ∈R ±{0, 1}ε(μω+k)

∀i ∈ {1, · · · , z}, ti =
∏r

ω=1 Ãrω
ω,i

∀ω ∈ {1, · · · , r}, sω = rω − c(xω − 2lω )

c ∈R {0, 1}k

∀i ∈ {1, · · · , z},
r∏

ω=1

Ãsω
ω,i

?= ti

⎛
⎝ ∏

j /∈Ji

A
ai

j

j

r∏
ω=1

Ã2lω

ω,i

⎞
⎠

c

s = {sω}

c

t = {ti}

Fig. 1. Discrete-log Relation Set R
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Using these notations, a 3-move honest verifier zero-knowledge proof allows a
prover that knows witnesses x1, . . . , xr such that ∀ω, xω ∈]2lω −2ε(μω+k)+2, 2lω +
2ε(μω+k)+2[ and R(x1, . . . , xr) = 1 to prove knowledge of these values, is pre-
sented in [20] and shown in Figure 1, where ε and k are both security parameters
such that ε > 1 and k ∈ N.

Remark 1. Note that the proof of knowledge of Figure 1 only proves that a
witness x ∈]2l − 2μ, 2l + 2μ[ lies in ]2l − 2ε(μ+k)+2, 2l + 2ε(μ+k)+2[. If needed,
Boudot presents in [4] a scheme that provides a perfect proof but with less
efficiency. If the interval is small, it is also possible to use a bit-by-bit solution,
such as in [3,8].

3.2 The Result of Kiayias, Tsiounis and Yung

In [20], the authors present a particular case of our result. They prove the security
of the construction of DLRS R presented in Figure 1 w.r.t. Definition 1 (see
Section 2.3) in the case the relation R is triangular, and when G is the group
QR(n) of quadratic residue modulo n where n is a safe RSA modulus. In the
following, G will also be this group. In the next section, we will prove the security
of this construction in the general case. A triangular DLRS is introduced in [20]
by the following definition.

Definition 3. (see [20]) A discrete-log relation set R is triangular if for
each relation i containing the b + 1 free variables αω, αω1 , . . . , αωb

it holds that {αω1 , . . . , αωb
} is a subset of the union of all the free variables

involved in relations 1, . . . , i − 1.

In this context, Kiayias et al. prove that the construction in Figure 1 is secure,
i.e. for any triangular discrete-log relation set R the 3-move protocol of figure 1
is complete, sound and honest-verifier zero-knowledge.

3.3 On the Use of Kiayias, Tsiounis and Yung Result

If a complex proof of knowledge can be represented by a triangular discrete-log
relation set, the construction of [20] is suitable. This is for example the case in
the group signature scheme proposed by Ateniese et al. [1], where the DLRS is
composed of the 9 objects T1, T2, T3, A, a0, a, y, g, h, the 4 free-variables α, β, γ, δ
such that the 4 relations a0 = T α

1 /(aβyγ) ∧ T2 = gδ ∧ 1 = T α
2 /gγ ∧ T3 = gαhδ)

are verified in order to produce a signature.
But, in some cases, their approach cannot be applied. For example, the con-

struction of [5] uses a DLRS with 8 objects (C, C1, C2, C3, g, h, 1/g, 1/h) and 11
variables (α, β, γ, δ, η, ζ, φ, ψ, θ, σ, ν) verifying the following conjunction of the 7
relations

C = gαhφ ∧ g =
(C

g

)γ

hψ ∧ g = (gC)σhν ∧ C3 = gζhη

∧C1 = gαhθ ∧ v = Cα
2

( 1
h

)β

∧ 1 = Cα
3

( 1
h

)δ(1
g

)β

.

This DLRS clearly cannot be represented by a triangular discrete-log relation set.
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This is also the case for [9] and more simply if Alice wants to commit to the
value x using the Fujisaki-Okamoto construction [16], and that she knows the
commited value. The latter can be done by computing PK(α, β : C = gαhβ),
that is a DLRS R of 1 relation over 2 variables and 3 objects.

Consequently, there is sometimes more than one new free-variable at each new
relation. More generally speaking, when a discrete-log relation set R is not trian-
gular, then for each relation i containing the free variables αω̃1 , . . . , αω̃d

, αω1 , . . . ,
αωb

it holds that the free variables αω1 , . . . , αωb
were contained in the union of

all the free variables involved in relations 1, . . . , i − 1. But that does not imply
that the construction proposed in Figure 1 does not suit the general case. What
lacks is a security proof for this construction in the general setting: the result of
Kiayias et al. [20] cannot be used as it is in the general case.

4 Generalization of the DLRS Theorem

In the general setting, the proof of completeness andhonest-verifier zero-knowledge
are not different to the one described in [20]. They will consequently not be treated
in this paper. On the contrary, the proof of soundness of [20] must be deeply modi-
fied to suit the model considering any kind of DLRS, not only the triangular ones.
This adaptation is the actual contribution of this paper.

An interactive protocol between a prover P and a verifier V verifies the sound-
ness property if a dishonest prover P̃ can not be accepted by a verifier V with
non-negligible probability. Generally, a probabilistic polynomial time Turing ma-
chine M that can find x by interacting with P̃ is constructed to prove this
property.

4.1 Our Result in a Nutshell

In this section, we briefly present our proof of soundness for all kinds of DLRS.
The global structure of our proof is described in Figure 2.

In the first step, we assume that there exists P̃ able to produce, with non-
negligible probability, valid proofs of knowledge without knowing the secret val-
ues X = {x1, . . . , xs}. Our aim is to construct a p.p.t. Turing machine M which,
for each equation, is able to solve a given instance of the Flexible RSA problem
(FRSA).

We first give an instance (n, Γ ) of the Flexible RSA problem to M. M
generates a random DLRS R, function of this instance. We then ask P̃ to
produce a valid proof of knowledge until we obtain two valid conversations
〈t, c, s〉, 〈t, c∗, s∗〉, where c �= c∗, t = {t1, . . . , tz}, s = {s1, . . . , sr},s∗= {s∗1, . . ., s∗r}.
We also denote s̃i = si − s∗i for all i, S̃ = {s̃1, . . . , s̃r} and c̃ = c − c∗.

From these relations, M then computes for each of the z relations an indepen-
dent equation only depending on c, c∗, s and s∗. Each couple (si, s

∗
i ) is related

to a free variable, and thus to a secret. Our aim is then to retrieve the value of
all secrets.
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In a similar way to [20], the machine M always operates as follows.

1. For each of the z relations, it first pushes aside the couples (si, s
∗
i ) for which

the secret has already been retrieved. This step is not done for the first
relation.

2. It then calculates the number of secrets that are unknown in the relation.
Depending on it, there are three cases.
(a) There is only one unknown secret. This is the case that has been studied

in [20]. In fact, if, for each relation, there is only one unknown secret, the
DLRS is then triangular. The conclusion is that either we can compute
all secret or we can solve the instance (n, Γ ) of the Flexible RSA problem.

(b) There are two unknown secrets. This case corresponds to the ZKPK of a
representation. In a group of unknown order, the case has been studied in
[13], using the Root assumption. We thus adapt it by using the Flexible
RSA assumption. The conclusion is that either we can compute all secrets
or we can solve the instance (n, Γ ) of the Flexible RSA problem.

(c) The general case (up to three but the cases 1 and 2 can also be seen as
particular cases) is the one we study in this paper. The relation can thus
be denoted as Ãs̃1

1 . . . Ãs̃d

d = Ψ c̃
i . Ã1, . . . , Ãd correspond to the objects

defined after the DLRS definition (see Section 3) and Ψi is the product
of a constant element and possibly some objects Ãj raised to the power
of secret values already compute. c̃, S̃ are dependant of c, c∗, S, S∗.
We then study two cases. In the first one, M retrieves all secrets involved
in this relation. The second case is also divided into two possible cases.
i. M can solve the instance (n, Γ ) of the FRSA problem.
ii. We prove that the second case only happens with probability less

than 1/2.
If M is able to find all the secret values, P̃ can also do it. So, under the
assumption that P̃ does not know these values, we conclude that M solves
the given instance of the Flexible RSA problem.

In all papers where there is a ZKPK in the group of unknown order QR(n),
such as in the paper of Kiayias, Tsiounis and Yung [20] but also e.g. in [1,6],
a p.p.t. Turing machine M is constructed so as to solve with a non-negligible
probability an instance of the Flexible RSA problem. However, this instance is
never specified so that it could possibly be an easy instance of the problem.

More precisely, the solved instance corresponds to the modular multiplication
of public parameters (the Ai’s) but nothing is said about the difficulty of solving
the Flexible RSA on one Ai nor on the modular multiplication of some of them.
It seems better, and that’s what we do in our proof, to introduce a challenger
C which gives to M a random instance of the Flexible RSA problem at the
beginning of the proof.

Nevertheless, as we will see in our proof, M will need to interact possibly with
several dishonest provers P̃ , depending on the objects A1, . . . , Am the machine
M has to use to solve the Flexible RSA instance. The number z of relations and
the number r of free variables can be unchanged between all the interactions.
This consequently implies the use of an attacker P̃ being able to break the
soundness of a DLRS for a polynomial number of tuples A1, . . . , Am.
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Ãs̃1
1 . . . Ã
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z equations

d unknown secrets

⇒

Fig. 2. Sketch of proof

4.2 The New Theorem

We can then introduce our new theorem and prove the security of the construc-
tion in Figure 1 in the case of any discrete-log relation set.

Theorem 1. Let G = QR(n) where n(= (2p′ + 1)(2q′ + 1)) is safe. For any
discrete-log relation set R the 3-move protocol of Figure 1 is a honest-verifier
zero-knowledge proof of knowledge that can be used by a first party (prover)
knowing a witness for R to prove knowledge of the witness to a second party
(verifier).

Proof. We have to prove that the protocol of Figure 1 verifies the three properties
of completeness, soundness and honest verifier zero-knowledge. The proof of
completeness and honest verifier zero-knowledge can be found in [20]. They will
not be treated in this proof. The proof of soundness of [20] must be modified to
suit our model (all kinds of DLRS, not only the triangular ones).

Assume it exists a dishonest prover P̃ attacking the soundness of the protocol
presented in Figure 1. It means that P̃ is able to produce valid conversations
for this protocol with non-negligible probability, and without knowing all the
involved secrets. We define a p.p.t. Turing machine M which solves a given in-
stance of the Flexible RSA problem, using P̃ as an oracle. Let C be the challenger
who gives the instance (n, Γ ) of the Flexible RSA problem to M. The Turing
machine M:

– takes on input the instance (n, Γ ) of the FRSA problem given by C,
– generates a random DLRS R,
– interacts with P̃,
– solves the given instance using P̃ ’s outputs.
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In order to define R, M randomly chooses integers γω ∈ {1, . . . , n2} and
computes Aω = Γ γω , for ω ∈ {1, . . . , m}. Under the factorisation assump-
tion, the order of Γ is φ(n)/4 and consequently, the Aω are distributed over
QR(n). M sends R to the dishonest prover P̃ . Let 〈t1, . . . , tz, c, s1, . . . , sr〉 and
〈t1, . . . , tz, c∗, s∗1, . . . , s∗r〉, with c �= c∗, be two accepted protocols for R between
P̃ and an (honest) verifier. As these protocols are valid, both following relations
are true for all i ∈ {1, . . . , z}:

r∏
ω=1

Ãsω

ω,i = ti

⎛
⎝ ∏

j /∈Ji

A
ai

j

j

r∏
ω=1

Ã2lω

ω,i

⎞
⎠

c

and
r∏

ω=1

Ã
s∗

ω

ω,i = ti

⎛
⎝ ∏

j /∈Ji

A
ai

j

j

r∏
ω=1

Ã2lω

ω,i

⎞
⎠

c∗

⇒
r∏

ω=1

Ã
sω−s∗

ω

ω,i =

⎛
⎝ ∏

j /∈Ji

A
ai

j

j

r∏
ω=1

Ã2lω

ω,i

⎞
⎠

c−c∗

. (1)

The proof consists now in proving that using relations (1) for all i ∈ {1, . . . , z},
M is able to solve the given instance of the Flexible RSA problem. First, we in-
troduce the notations we will use in the following of the proof. For ω ∈ {1, . . . , r}:
s̃ω := sω − s∗ω, and c̃ := c − c∗. We also introduce the sets of distinct integers
Ωi = {ωi,1, . . . , ωi,d}, for each relation i (i.e. for i from 1 to z), such that the free
variables αωi,1 , . . . , αωi,d

are the ones involved in the i-th relation. Using these
notations, for i ∈ {1, . . . , z}, the relation (1) can be written:

∏
ω∈Ωi

Ãs̃ω

ω,i =

⎛
⎝ ∏

j /∈Ji

A
ai

j

j

∏
ω∈Ωi

Ã2lω

ω,i

⎞
⎠

c̃

. (2)

Relation 1. Considering the first relation, there are two cases:

• c̃ divides all the integers s̃ω

The particular case where d = 1 (as in [20]) is included in the general case.
So we restrict our proof to the general case, where d ≥ 1. It holds that the
first relationship in R involves d free variables denoted by αω for ω ∈ Ω1 =
{ω1,1, . . . , ω1,d}. In this case, we have the following relation, where Ãω stands
for Ãω,1:

∏
ω∈Ω1

Ãs̃ω
ω =

⎛
⎝ ∏

ω∈Ω1

Ã2lω

ω

∏
j /∈J1

A
a1

j

j

⎞
⎠

c̃

.

As c̃ divides s̃ω, for all ω ∈ Ω1, the previous relation becomes (see remark
below):

∏
ω∈Ω1

Ã
−s̃ω

c̃ +2lω

ω

∏
j /∈J1

A
a1

j

j = 1. (3)
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Remark 2. In fact, we have the following equivalence :

∏
ω∈Ω1

Ãs̃ω
ω =

⎛
⎝ ∏

ω∈Ω1

Ã2lω

ω

∏
j /∈J1

A
a1

j

j

⎞
⎠

c̃

⇔
∏

ω∈Ω1

Ã
s̃ω
c̃

ω = ν
∏

ω∈Ω1

Ã2lω

ω

∏
j /∈J1

A
a1

j

j ,

with νc = 1. Indeed, by definition c̃ < 2k and thus c̃ < min(p, q). By
Lemma 1, we can then affirm that the order of ν can only be equal to 1 or
2 and by lemma 2, that ν can only be equal to 1. We will not repeat this
remark later, even when it holds.

The equality 3 implies that we have constructed the d witnesses for each
ω-th variable x̃ω = s̃ω

c̃ + 2lω = sω−s∗
ω

c−c∗ + 2lω where ω ∈ Ω1.
We verify that these values are in the right interval. For ω ∈ Ω1, s̃ω ∈
±{0, 1}ε(μω+k)+2 (since sω, s∗ω ∈ ±{0, 1}ε(μω+k)+1, it implies that s∗ω − sω ∈
±{0, 1}ε(μω+k)+2) it follows that s̃ω

c̃ ∈ ±{0, 1}ε(μω+k)+2 and as a result
x̃ω ∈]2lω − 2ε(μω+k)+2, 2lω + 2ε(μω+k)+2[. Consequently, M finds the secrets
{x̃ω} for ω ∈ Ω1 in polynomial time, P̃ can also find it. So we can assume
that P̃ already knows it.

• It exists at least one integer ω ∈ Ω1 such that c̃ does not divide s̃ω.
Now, we prove that M solves the given instance (n, Γ ) of the FRSA problem
on G. Let

T1 =

⎛
⎝ ∏

ω∈Ω1

Ã2lω

ω

∏
j /∈J1

A
a1

j

j

⎞
⎠ .

For all j in {1, . . . , d}, Aj = Γ γj , and for all ω ∈ Ω1, we have Ãω =∏
j∈Jω,1

Aj =
∏

j∈Jω,1
Γ γj = Γ

∑
j∈Jω,1

γj . We define θω =
∑

j∈Jω,1
γj

(mod n2) for all ω ∈ Ω1. Consequently, with those notations relation (2)
becomes:

∏
ω∈Ω1

(
Γ

∑
j∈Jω,1

γj

)s̃ω

= T c̃
1 ⇔ Γ

∑
ω∈Ω1

θω s̃ω = T c̃
1 . (4)

Without loss of generality, we assume that integers s̃1,1, . . . , s̃1,d1 are divisible
by c̃, as opposed to integers s̃1,d1+1, . . . , s̃1,d2 , with 1 ≤ d1 < d2 = d. If
d2 = 1, because we assumed that c̃ does not divide all the s̃ω, then d1 = 0.
Then there are two cases:
1. If c̃ does not divide

∑
ω∈Ω1

θω s̃ω, M can solve the given instance of
the Flexible RSA problem as follows. Let δ be the greatest common
divisor of c̃ and

∑
ω∈Ω1

θω s̃ω. There exist α and β in Z such that αc̃ +
β
( ∑

ω∈Ω1
θω s̃ω

)
= δ. It follows that

Γ = Γ

(
αc̃+β(

∑
ω∈Ω1

θω s̃ω)
)
/δ = (Γ αT β

1 )c̃/δ.

By assumption, δ < c̃ and so, we can set e = c̃/δ and u = Γ αT β
1 , which

is a solution of the Flexible RSA problem on G relatively to the instance
(n, Γ ).
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Remark 3. This part of the proof works with any values of the integer
d1 < d2.

2. If c̃ divides
∑

ω∈Ω1
θω s̃ω, we prove that, as P̃ does not have complete

information about the θω’s, this case only happens with probability less
or equal to 1/2. Consequently, case (1) happens with probability greater
than 1/2 and the probability to break the Flexible RSA assumption is
greater than 1/2. The strategy consists in choosing the θω’s until we get
back on case (1). This quickly happens in a bounded time with non-
negligible probability.
Let f be a prime factor of c̃ and e an integer such that:

• fe is the greatest power of f that divides c̃,
• at least one of the s̃ω is non-zero modulo fe.

This value must exist since c̃ does not divide at least one of the s̃ω,
even if d2 = 1. For all ω ∈ Ω1, we define bω = θω (mod ord(G)) and
hω such that θω = bω + hω ord(G). Note that the Ãω,1’s represent all
the information the machine P̃ knows about the θω’s and the bω’s are
uniquely determined from the Ãω,1’s, whereas the hω’s are completely
unknown. As fe divides

∑
ω∈Ω1

θω s̃ω (since c̃ does), it follows that

∑
ω∈Ω1

θω s̃ω = 0 (mod fe) and
d2∑

j=1

θω1,j s̃ω1,j = 0 (mod fe).

We know that for j from 1 to d1, s̃ω1,j ≡ 0 (mod fe) as they are divisible
by c̃, consequently,

∑d1
j=1 θω1,j s̃ω1,j ≡ 0 (mod fe).

d2∑
j=d1+1

bω1,j s̃ω1,j + ord(G)
d2∑

j=d1+1

hω1,j s̃ω1,j = 0 (mod fe). (5)

Since fe ≤ 2k ≤ min(p′, q′, we have |G| �= 0 (mod f). P̃ does not know
anything about the hω’s except that they follow the uniform distribution
and that they satisfy equation (5). Let ω̃ be one of the indexes such that
s̃ω̃ is not divisible by fe. If d2 = 1, it is evident that ω̃ = 1. If we fix
the hω’s for ω ∈ Ω1/{ω̃}, then the number of solutions modulo fe of
the equation (5) is at most gcd(|G|s̃ω̃ , fe). This number is necessarily a
power of f , since fe does not divide |G|s̃ω̃ , and at most fe−1. Since for all
ω ∈ Ω1, θω has been chosen from a large interval, the distribution of bω

is statistically indistinguishable from the uniform distribution on Zp′q′ .
Moreover the distribution of hω is statistically indistinguishable from the
uniform distribution on {0, . . . , M}, where M =

⌊
n2/p′q′

⌋
. Thus, there

are nearly Md2 possible tuples 〈h1, . . . , hd2〉 uniformly distributed [12].
Let w ∈ R such that M = wfe. The number of solutions of the equation
is at most [wfe−1]Md2−1, hence the probability that the hω’s verify the
equation is at most

[wfe−1]Md2−1

Md2
≤ wfe−1

M
≤ wfe−1

wfe
≤ 1

f
≤ 1

2
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We can then solve the instance of the Flexible RSA problem with non-
negligible probability.

If P̃ outputs integers c̃, s̃1, . . . , s̃r such that relation (4) is verified and at
least one of the s̃ω is not divisible by c̃, for ω ∈ Ω1, then M solves the given
instance of the Flexible RSA problem.

Relation i. Now, we assume that we have processed all the relations with
index less than i and M did not already solve the instance of the FRSA
problem. We process the i-th relation which involves variables αω, for all
ω ∈ Ωi(= {ωi,1, . . . , ωi,d}). As we have processed all the relations with index
less than i, some of these variables are already known. We split Ωi in two sets of
integers Ωi,1 = {ωi,1, . . . , ωi,d2} and Ωi,2 = {ωi,d2+1, . . . , ωi,d} so that the vari-
ables αω, for ω ∈ Ωi,2 are already contained in previous relations. We assume
that these variables are known by M and then by P̃ . By an inductive argument,
we construct witnesses for the free-variables x̃ω = −s̃ω

c̃ + 2lω = s∗
ω−sω

c−c∗ + 2lω , and
c̃ divides s̃ω, for all ω ∈ Ωi,2. There are again two cases:

• c̃ divides s̃ω, for all ω ∈ Ωi,1

First, we study the particular case where d2 = 1 (see also [20]): the i-th
relation in R involves variables αωi,1 , . . . , αωi,d

, where αωi,1 is the only one
for which the witness associated is not yet constructed. Using relation (2),
the i-th relation becomes, where Ãω stands for Ãω,i:

Ã
s̃ωi,1
ωi,1

∏
ω∈Ωi,2

Ãs̃ω
ω =

⎛
⎝Ã2

lωi,1

ωi,1

∏
ω∈Ωi,2

Ã2lω

ω

∏
j /∈Ji

A
ai

j

j

⎞
⎠

c̃

Ã
s̃ωi,1
ωi,1 =

⎛
⎝Ã2

lωi,1

ωi,1

∏
ω∈Ωi,2

Ãx̃ω
ω

∏
j /∈Ji

A
ai

j

j

⎞
⎠

c̃

.

As c̃ divides sωi,1 we obtain the following relation :

Ã
−s̃ωi,1+2

lωi,1

c̃
ωi,1

∏
ω∈Ωi,2

Ãxω
ω

∏
j /∈Ji

A
ai

j

j = 1.

The above equality implies that we have constructed the witness for the

variables x̃ωi,1 =
−s̃ωi,1

c̃ + 2lωi,1 =
s∗

ωi,1
−sωi,1

c−c∗ + 2lωi,1 . As previously, it is
possible to show that this witness is in the right interval, i.e. x̃ωi,1 ∈]2lωi,1 −
2ε(μωi,1+k)+2, 2lωi,1 + 2ε(μωi,1+k)+2[. We can also assume in this case that P̃
already knows this witness.

Now, we study the general case where d2 �= 1: the i-th relation in R
involves variables αω1 , . . . , αωd

so that variables αωd2+1 , . . . , αωd
were already

contained in previous relations. So the associated witnesses are known by P̃ .
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Using relation (2), the i-th relation becomes:

∏
ω∈Ωi,1

Ãs̃ω
ω

∏
ω∈Ωi,2

Ãs̃ω
ω =

⎛
⎝ ∏

ω∈Ωi,1

Ã2lω

ω

∏
ω∈Ωi,2

Ã2lω

ω

∏
j /∈Ji

A
ai

j

j

⎞
⎠

c̃

(6)

∏
ω∈Ωi,1

Ãs̃ω
ω =

⎛
⎝ ∏

ω∈Ωi,1

Ã2lω

ω

∏
ω∈Ωi,2

Ãx̃ω
ω

∏
j /∈Ji

A
ai

j

j

⎞
⎠

c̃

. (7)

As c̃ divides sω for all ω ∈ Ωi,1 we obtain the following relation:

∏
ω∈Ωi,1

Ã
−s̃ω+2lω

c̃
ω

∏
ω∈Ωi,2

Ãxω
ω

∏
j /∈Ji

A
ai

j

j = 1.

The above equality implies that we have constructed d2 witnesses for each
ω-th variable x̃ω = −s̃ω

c̃ + 2lω = s∗
ω−sω

c−c∗ + 2lω , for all ω ∈ Ωi,1. As previously,
it is possible to show that these witnesses are in the right intervals, i.e.
x̃ω ∈]2lω −2ε(μω+k)+2, 2lω +2ε(μω+k)+2[, for all ω ∈ Ωi,1. We can also assume
in this case that P̃ already knows those witnesses.

• It exists at least one integer ω ∈ Ωi,1 such that c̃ does not divide s̃ω. Like in
part (4.2), we have to prove that M can solve the given instance (n, Γ ) of
the Flexible RSA problem on G. As in the previous part, the relation (7) is

true. Let Ti =
(∏

ω∈Ωi,1
Ã2lω

ω

∏
ω∈Ωi,2

Ãx̃ω
ω

∏
j /∈Ji

A
ai

j

j

)
. As in part (4.2), we

have, for all ω ∈ Ωi,1, Ãω = Γ
∑

j∈Jω,i
γj , and we define θω =

∑
j∈Jω,i

γj , for

all ω ∈ Ωi,1. With those notations, relation (7) becomes Γ
∑

ω∈Ωi,1
θω s̃ω = T c̃

i .
This relation has exactly the same form than relation (4). Then, it is possible
to conclude similarly that M solves the given instance of the Flexible RSA
problem on G with a non-negligible probability.

In conclusion, M will not be able to solve the given instance (n, Γ ) of the
Flexible RSA problem only if c̃ divides all integers s̃1, . . . , s̃r. But in this case,
it is necessary that P̃ knows all the witnesses involved in the protocol, which is
infeasible by assumption. Consequently, M necessarily solves the given instance
(n, Γ ) if it obtains as input two valid conversations from P̃. Since the machine M
interacts a polynomial number of times with P̃ which runs in polynomial time,
M solves the random instance of the Flexible RSA problem in polynomial time.
Thus, under the Flexible RSA assumption, P̃ cannot product valid conversations
for the protocol of Figure 1, then the soundness of the DLRS is proved.

5 Conclusion

We have proved that many complex discrete-logarithm protocols in groups of
unknown order are ZKPK under the Flexible RSA assumption. A result by
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Kiayias, Tsiounis and Yung appears as a particular case of our construction. It
is possible to extend the work done in this paper to signature schemes using the
Fiat-Shamir heuristic [15]. The security of the construction can then be proven
by using the result of [21].

There is still some work to do since complex cryptographic constructions can
also use ZKPK of secret values verifying some different properties not studied in
this paper such as e.g. the proof of the “or” statement and the proof of equality
of two discrete logarithms in different groups.
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Abstract. We prove that there are no black-box reductions from Collision-Free
Hash Functions to secure time-stamping schemes, which means that in principle
secure time-stamping schemes may exist even if there exist no collision-resistant
hash functions. We show that there is an oracle relative to which there exist secure
time-stamping schemes but no hash function is collision-free. The oracle we use
is not new — a similar idea was already used by Simon in 1998 to show that
collision-free hash functions cannot be constructed from one-way permutations
in a black-box way. Our oracle contains a random hash function family f and a
universal collision-finder A. We show that hash-tree time-stamping schemes that
use f as a hash function remain secure even in the presence of A. From more
practical view, our result is an implicit confirmation that collision-finding attacks
against hash functions will tell us quite little about the security of hash-tree time-
stamping schemes and that we need more dedicated research about back-dating
attacks against practical hash functions.

1 Introduction

Cryptographic hash functions transform a message X of an arbitrary length into a digest
h(X) of a fixed length. They have several applications, such as electronic signatures,
fast Message Authentication Codes (MACs), secure registries, time-stamping schemes,
etc. Though the range of hash function applications is growing rapidly, not much is
known either about suitable design criteria or about how to formalize the security con-
ditions for hash functions demanded by applications.

Security proofs of applications often assume the collision-freedom of hash functions
and this gives an impression as if such a strong security requirement was necessary.
Recent success in finding collisions for practical hash functions (MD4,MD5, RIPEMD,
SHA-0) by Wang et al. [13,14,16] and later improvements [11,15] forced us to revisit
the security proofs in order to clarify for which practical implementations the collisions
are a real threat.

This paper focuses on one particular application of cryptographic hash functions –
time-stamping. For a long time it was believed that collision-freedom is a necessary

� Partially supported by Estonian SF grant no. 6944, and by EU FP6-15964: “AEOLUS”.

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 138–150, 2007.
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and sufficient condition for the security of hash-tree based time-stamping schemes. In
2004, it was shown by Buldas and Saarepera [3] that collision-freedom is probably
insufficient to prove that unbounded hash-tree time-stamping schemes [1,5] (without
explicit restrictions to the length of hash-chains) are secure. Buldas and Laur [2] then
showed that collision-freeness (and even one-wayness) is also unnecessary—once there
are hash functions that are secure for time-stamping, then there also exist hash functions
which are secure for time-stamping but are not even one-way (and hence, not collision-
resistant). This result shows that breaking a particular hash function in terms of colli-
sions (even if they are meaningful textual documents) does not necessarily mean that
this particular hash function is insecure for time-stamping.

In this paper we go even further. We show that collision-free hash functions can-
not be constructed from secure time-stamping schemes in a black-box way. This means
that even if one finds a universal collision-finder that ”breaks” all known hash functions,
there may still exist hash functions that remain secure for time-stamping. We show that
there is an oracle relative to which there exist secure time-stamping schemes but no
hash function is collision-free. The oracle we use is not new — a similar construc-
tion was already used by Simon [12] to show that collision-free hash functions cannot
be constructed from one-way permutations in a black-box way. Our oracle contains a
random hash function family f : {0, 1}2k → {0, 1}k and a universal collision-finder
A. To prove the main result of this paper we will show that hash-tree time-stamping
schemes with the random hash function f remain secure in the presence of the univer-
sal collision-finding oracle A.

From the practical point of view, our result is another confirmation that collision-
finding attacks against hash functions will tell us quite little about the security of time-
stamping schemes that use these “broken” hash functions. Therefore, to study the
security of hash-based time-stamping schemes, it is insufficient to study the feasibil-
ity of collision-finding attacks. Instead, we need dedicated research on practical back-
dating attacks. To our knowledge, there is only one work published on this issue [8].

The paper is organized as follows. Section 2 gives necessary notations and defi-
nitions. Section 3 outlines the basics of secure hash-based time-stamping schemes. In
Section 4, for the self-consistency of this paper, we provide the reader with basic defini-
tions and results about oracle separation. In Section 5, we define the separating oracles
and prove the main result of this work.

2 Preliminaries and Notation

By x ← D we mean that x is chosen randomly according to a distribution D. If A is
a probabilistic function or a Turing machine, then x ← A(y) means that x is chosen
according to the output distribution of A on an input y. By Un we denote the uni-
form distribution on {0, 1}n. If D1, . . . , Dm are distributions and F (x1, . . . , xm) is a
predicate, then Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability
that F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm. For functions
f, g : N → R, we write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
(∀k > k0). We write f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k) = 0. If f(k) = k−ω(1), then

f is negligible. A Turing machine M is polynomial-time (poly-time) if it runs in time
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kO(1), where k denotes the input size. Let FP be the class of all probabilistic functions
f : {0, 1}∗ → {0, 1}∗ computable by a poly-time M.

By an oracle Turing machine we mean an incompletely specified Turing machine
S that comprises calls to oracles. The description can be completed by defining the
oracle as a function O : {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO.
The function y ← O(x) is not necessarily computable but may still have assigned a
conditional running time t(x), which does not reflect the actual amount of computations
needed to produce y from x. The running time of SO comprises the conditional running
time of oracle calls – each call O(x) takes t(x) steps. An oracle O is poly-time if
t(x) =|x|O(1), where |x| denotes the bit-length of x. We say that S is a poly-time oracle
machine if SO runs in poly-time, whenever O is poly-time.

A primitive P is a class of (not necessarily computable by ordinary Turing machines)
functions intended to perform a security related task (e.g. data confidentiality, integrity
etc.). Each primitive P is characterized by the success δ(k) of an adversary A. An in-
stance f of a primitive P is secure if every poly-time adversary can break f only with
a negligible success. Let O be an oracle. We say that f is secure relative to O if every
poly-time oracle adversary AO can break f only with negligible success.

A distribution family {Dk}k∈N is poly-sampleable if there is D ∈ FP with output
distribution D(1k) ≡ Dk. Let F = {Fk}k∈N be a poly-sampleable distribution family
such that every h ← Fk is a function h : {0, 1}�(k) → {0, 1}k, where �(k) = kO(1) and
�(k) > k for every k ≥ 0. We say that F is collision-free if for every A ∈ FP:

Pr
[
h ← Fk, (x, x′)←A(1k, h) : x 	= x′, h(x) = h(x′)

]
= k−ω(1) .

If for every k there exists hk so that Pr [h ← Fk : h = hk] = 1, then we have a fixed
family of functions, i.e. for each k we have a single unkeyed hash function, e.g. SHA-1.

3 Secure Time-Stamping

A time-stamping procedure consists of the following general steps:

– Client sends a request x ∈ {0, 1}k to Server.
– Server binds x with a time value t and sends Client a time-certificate c.

Time-stamping protocols process requests in batches X1, X2, X3 . . . that we call rounds.
The rounds correspond to time periods of fixed duration (one hour, one day, etc.) After
the t-th period, a short commitment rt = Com(Xt) of the corresponding batch Xt is
published. A request x ∈ Xt precedes another request x′ ∈ Xt′ if t < t′. The requests
of the same batch are considered simultaneous. For such a scheme to be efficient there
must be an efficient way to prove inclusions x ∈ Xt, i.e. there is a verification algorithm
Ver that on input a request x, a certificate c and a commitment rt returns true if x ∈ Xt.
On the one hand, it should be easy to create certificates for the members x ∈ Xt, i.e.
there has to be an efficient certificate generation algorithm Cert that outputs a certificate
c = Cert(x, Xt). On the other hand, for the security of this scheme it must be infeasible
to create such proofs for non-members y 	∈ Xt, i.e. it is infeasible to find a certificate c′

such that Ver(y, c′, rt) = true.
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Definition 1. By a time-stamping scheme we mean a triple (Com, Cert, Ver) of efficient
algorithms, where:

– Com is a commitment algorithm, which on input a set X of requests outputs a
commitment r = Com(X).

– (Compression property) for every k > 0, m > 0 and for any set X = {x1, . . . , xm},
where xi ∈ {0, 1}k, the output Com(X) belongs to {0, 1}k. Hence, the commitment
procedure is able to compress mk-bit strings into k-bit commitments.

– Cert is a certificate generation algorithm, which on input a set X and an element
x ∈ X generates a certificate c = Cert(X, x).

– Ver is a verification algorithm, which on input a request x, a certificate c and a
commitment r outputs yes or no, depending on whether x is a member of X (the set
that corresponds to the commitment r). It is assumed that for every set X of requests
and every member-request x ∈ X the following correctness condition holds:

Ver(x, Cert(x, X), Com(X)) = yes . (1)

The compression property is crucial for the results of this paper being interesting. If
non-compressing commitment procedures were allowed, it would be pretty straightfor-
ward to show that collision-resistant hash functions cannot be constructed from time-
stamping schemes. We will return to this question later when we introduce the notion
of security.

3.1 Security Condition for Time-Stamping Schemes

Different security definitions exist for time-stamping schemes [3,2,5]. In this paper,
we use the strongest definition [2], which though applying to so-called hash-tree time-
stamping schemes, can be easily generalized to all time-stamping schemes. The security
condition of [2] is inspired by the following attack-scenario with a malicious Server:

(1) Server computes a commitment r and publishes it. Note that Server is assumed to
be malicious, so there are no guarantees that r is created by applying Com to a set
X of requests.

(2) Alice, an inventor, creates a description DA ∈ {0, 1}∗ of her invention and protects
it somehow, possibly by filing a patent or obtaining a time stamp.

(3) Some time later, the invention DA is disclosed to the public and Server tries to
steal it by showing that the invention was known to Server long before Alice time-
stamped it. He creates a slightly modified version D′

A of A, i.e. changes the in-
vertor’s name, modifies the creation time, and possibly rewords the document in a
suitable way.

(4) Finally, Server back-dates a hash value x = H(D′
A) of the modified invention

document, by finding a certificate c, so that Ver(x, c, r) = yes.

To formalize such a scenario, a two-staged adversary A = (A1, A2) is used. The first
stage A1 computes r (and an advice string a) after which the second stage A2 finds a new
x (which is assumed to be a random variable with a sufficient amount of entropy) and
a certificate c such that Ver(x, c, r) = yes. Note that x must be unpredictable because
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otherwise x could have been pre-computed by A1 and hence there would be nothing
wrong in proving that x existed before r was computed and published.

Hence, for defining the security of time-stamping schemes, the class of possible ad-
versaries is restricted. We have to consider only those adversaries that produce unpre-
dictable x. Let FPU be the class of all two-staged probabilistic poly-time adversaries
(A1, A2), such that the output component x is unpredictable, even if the output of A1 is
known to the predictor, i.e. for every poly-time predictor Π:

Pr
[
(r, a) ← A1(1k), x′ ← Π(r, a), (x, c) ← A2(r, a) : x′ = x

]
= k−ω(1) . (2)

The internal random coins of A2 and Π are not explicitly shown in (2), i.e. are not
included into a. Otherwise, Π ≡ A2 would contradict the definition.

Note also that it is reasonable to assume that the advice string a contains all internal
random coins of A1 (see [2] for more details) and we will use this assumption later in
the proof of our main theorem. However, as we will show, the separation result still
remains valid without this assumption.

Definition 2. A time-stamping scheme is secure if for every (A1, A2) ∈ FPU:

Pr
[
(r, a)←A1(1k), (x, c)←A2(r, a) : Ver(x, c, r) = yes

]
= k−ω(1) . (3)

Remark on the Compression Property. If the compression property was not assumed
in Def. 1, then we would have a trivial provably secure time-stamping scheme T0. De-
fine Com(X) = X, Cert(X, x) = 
�, and Ver(x, c, r) = yes iff x ∈ r. Clearly, T0
cannot be broken by any adversary with any amount of computational resources. If we
have a black-box cryptographic reduction that constructs collision-free hash functions
HT based on arbitrary time-stamping scheme T , then also HT0 must be a collision-free
hash function. However, collision-free hash functions can never be secure against arbi-
trary computational power—collisions always exist and can be found with exhaustive
search. Therefore, even if such a construction exists, it must be very inefficient. So,
without assuming the compression property, our separation result would not be very
interesting.

3.2 Hash Tree Time-Stamping Schemes

The commitments rt are computed as the root hash values of Merkle hash trees [9]. For
the self-consistency of this paper, we outline the basic facts about hash-chains and how
they are used in time-stamping. We use the notation and definitions introduced in [2].
By 
� we mean the empty string. If x = x1‖x2 ∈ {0, 1}2k and x1, x2 ∈ {0, 1}k, then
by y ∈ x we mean the inclusion y ∈ {x1, x2} (i.e. y is one of the two halves of x).

Definition 3 (Hash-Chain). Let h : {0, 1}2k → {0, 1}k be a twice-compressing hash
function. By an h-chain from x ∈ {0, 1}k to r ∈ {0, 1}k we mean a (possibly empty)
sequence c = (c1, . . . , c�) of pairs ci ∈ {0, 1}2k, such that the next two conditions
hold:

(1) if c = 
� then x = r; and
(2) if c 	= 
� then x ∈ c1, r = h(c�), and h(ci) ∈ ci+1 for every i ∈ {1, . . . , � − 1}.
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Fig. 1. Representation of a hash-chain

We denote by Chainh(x, c) = r the proposition that c is an h-chain from x to r. Note
that Chainh(x, 
�) = x for every x ∈ {0, 1}k. An illustration of this definition is given
in Fig. 1.

Hash-tree time-stamping schemes use Merkle trees to compute the commitments rt

for batches Xt. The commitment Com(Xt) of a batch Xt = {x1, . . . , xN} is rt =
T h(x1, . . . , xN ) ∈ {0, 1}k, where T h is a tree-shaped hashing scheme. A certificate
for x ∈ Xt is a hash chain c such that Chainh(x, c) = rt. The verification procedure
Ver(x, c, rt) returns yes whenever Chainh(x, c) = rt. In this paper, we denote the hash-
tree time-stamping scheme by Th.

4 Black-Box Reductions and Separation Techniques

When constructing a cryptographic primitive P out of another primitive Q one mostly
uses black-box reductions, i.e. P is constructed by using Q as a subroutine without
paying any attention to its implementation. One may also say that Q is used as a black
box. In security proofs for P an adversary for Q is constructed by using an arbitrarily
chosen adversary for P as a subroutine. Black-box reductions between cryptographic
primitives were first defined informally by Impagliazzo and Rudich [7]. A somewhat
more formal definition was later given by Gertner et al. [4].

4.1 Fully Black-Box Reductions

Definition 4. Black-box reduction (or fully black-box reduction) from primitive P to
primitive Q consists of two poly-time oracle machines P and S, satisfying the following
two conditions:

– ∀f (any function) implementing Q, Pf implements P; and
– ∀A∀f (any functions) f A breaks Pf (as P), then SA,f breaks f (as Q).

There are several forms of black-box reductions. For a detailed discussion on black-box
reductions, see [10]. Almost all reductions used in cryptography are indeed black-box
reductions.
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To show that no general reduction from P to Q exists requires proving that no efficient
instances of Q exist, which is unreachable for the current state of the art. It is however
still possible to show that no black-box reduction from P to Q exists. This of course does
not completely eliminate the existence of general reductions but still indicates the hard-
ness of constructing a reduction by showing that the traditional techniques certainly will
fail. The first such statement in cryptography was proved by Impagliazzo and Rudich
[7]. They built an oracle relative to which a key agreement does not exist but one-
way permutations do, which shows the impossibility of black-box reductions of a key
agreement to one-way permutations. There are many other such results known in cryp-
tography [12,6,4]. Many of these separation results actually proved the non-existence
of the so-called semi black-box reductions, but as reported by Hsiao and Reyzin [6],
showing the non-existence of fully black-box reductions is much more simple. In this
paper, we use their separation technique, which can be formalized as follows:

Theorem 1 (Hsiao,Reyzin). If there are two oracles A and f such that

(1) there is a poly-time oracle machine Tf that implements Q;
(2) for every poly-time oracle machine Pf that implements P, there is a poly-time ora-

cle machine DA,f that breaks Pf ;
(3) there is no poly-time oracle machine S such that SA,f breaks Tf ;

then there exist no black-box reductions from P to Q.

Compared to the separation of Simon [12], this result is weaker and applies only to
fully black-box reductions. However, in practice this weaker result is not so weak at all
because almost all efficient reductions in cryptography are fully black-box.

4.2 Semi Black-Box Reductions

So called semi black-box reductions differ from black-box reduction in the way we con-
struct an adversary for breaking the original primitive f based on an adversary A that
breaks the constructed primitive P f . In black-box reductions there was a uniform algo-
rithm S for this task, whereas in semi black-box reductions there is no such algorithm:

Definition 5. Semi black-box reduction from primitive P to primitive Q is a poly-time
oracle machine P, satisfying the following two conditions:

– ∀f (any function) implementing Q, Pf implements P; and
– ∀A (a poly-time oracle-machine) ∃B (a poly-time oracle machine), so that ∀f (any

function), if Af breaks Pf (as P), then Bf breaks f (as Q).

To show the impossibility of semi-black-box reductions, we would have to prove that
for every poly-time oracle machine PA,f that implements P, there is a poly-time oracle
machine DA,f that efficiently breaks PA,f . So, A should be able to break constructions
in which it participates itself. Needless to say that separation results with such a self-
reference are not very easy to follow and in this work we make no attempts to establish
such separation.
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5 Separating Collision-Free Hash Functions from Time-Stamping

5.1 Choice of A and f

Let F2−1 = {F2−1
k }k∈N be a function family, where {F2−1

k }k∈N is the set of all func-
tions fk of type {0, 1}2k → {0, 1}k. Let f be an oracle which contains a random
function family F2−1, where fk ← F2−1

k . Oracle f answers to a query (k, x) (where
x ∈ {0, 1}2k) with f(k, x) = fk(x). We assume that all f -queries are of unit cost. We
will later omit k and write f(x) instead of f(k, x) if the value of k is clear from the
context.

Let A be another oracle which uses the same function family {fk} and also a count-
ably infinite random string ω ← {0, 1}∞ for the internal coin-tosses of A. Oracle
A is a universal collision-finder that takes as input a description ”F f ” of a function
F f : {0, 1}m → {0, 1}� that may comprise f -calls. We assume that the description ex-
plicitly includes m and � and is represented in the form of an f -circuit, i.e. a boolean
circuit which in addition to ordinary boolean gates also comprises f -gates (possibly,
with various m and �). The circuit description helps to make the running time of oracle
calls independent of inputs and the choices of f and A. We also assume that for every
description “F f” there is a canonical ordering of f -queries, which does not necessarily
coincide with the order in which the queries are made in real computations. Note that it
is very hard to imagine a description language where such an ordering is not possible.

The behavior of A is defined as follows:

Definition of A: A(”F f ”) picks X ← {0, 1}m, chooses X ′ ← F−1(F (X))
and returns (X, X ′). For these random choices, dedicated sections of the ran-
dom string ω are used. A(”F f ”) also returns the pairs of (y, f(y)), which will
be known during the computation of F f (X) and F f (X ′). The conditional run-
ning time of A(”F f ”) is defined to be twice the number of gates in the descrip-
tion of F f .

The random variables X and X ′ are both uniformly distributed, but depend on each
other. Like in [12], the identical distribution of X and X ′ is a crucial detail in the
proof of the separation theorem. Clearly not all collision-finding oracles are suitable for
separation as we will see later in Sec. 6.

For our purposes it is safe to assume that the oracle calls are never repeated (i.e. A
is never called twice with the same arguments) and hence we need no more than 2m
random bits for each function description F f : {0, 1}m → {0, 1}�. We will also assume
that the random bits used by different A-queries are independent. We will show that:

(1) Relative to f and A there are no collision-resistant function families. This is clear
because for every poly-time oracle machine Pf that implements a function family
pk : {0, 1}m(k) → {0, 1}�(k) there is a poly-time oracle machine DA which on input
1k generates a finite circuit ”Ff

k” for computing pk (i.e. restricts the input domain,
unrolls the loops, etc.) and outputs a collision (x, x′) ← A(”Ff

k”). Even though A
can break only finite-domain hash functions F : {0, 1}m → {0, 1}�, we can use
A for breaking infinite domain hash functions as well. Indeed, if F : {0, 1}∞ →
{0, 1}� is poly-time, then we can represent F as a uniform polynomial-size circuit
family and then use A for a particular member-circuit.



146 A. Buldas and A. Jürgenson

(2) The standard Merkle-tree time-stamping scheme Tf is secure relative to f and A.
We show that no poly-time oracle machine SA,f can break Tf better than with
negligible probability.

From Thm. 1 it then follows that there exist no black-box reductions of collision-free
hash functions to secure time-stamping schemes.

5.2 Separation Theorem

Theorem 2. For every poly-time oracle machine SA,f = (SA,f
1 , SA,f

2 ) which is unpre-
dictable in terms of (2):

δS(k) = Pr
[
(r, a)←SA,f

1 (1k), (x, c)←SA,f
2 (r, a) : Chainf (x, c)=r

]
=k−ω(1) . (4)

Recall that Chainf (x, c) = r is equivalent to Ver(x, c, r) = yes in our particular case.

Proof. Let SA,f = (SA,f
1 , SA,f

2 ) be an adversary which is unpredictable in terms of (2).
As a result of a successful attack a hash-chain c = (c1, . . . , cm) is found, where x ∈ c1
and fk(cm) = r.

In any stage of the attack let R denote the set of all pairs (x, fk(x)) ∈ {0, 1}2k ×
{0, 1}k that are known to SA,f . This knowledge may only be originated from f - and
A-calls and hence R can be created by the following rules:

– After an f -call, y ← fk(x), the pair (x, fk(x)) is added to R.
– After an A-call, (X, X ′) ← A(”F f ”), all pairs of (x, fk(x)), which will be known

from the computation of F f (X) and F f (X ′), are added to R.

Let R1 denote the set of all known pairs after the stop of SA,f
1 (1k) and let R2 be the set

of known pairs added to R after the stop of SA,f
2 (r, a), i.e. R = R1 ∪ R2 (see Fig. 2).

We assume without loss of generality that after a successful attack SA,f
2 “knows” all

the internal computations of c, i.e. (ci, fk(ci)) ∈ R for all i = 1, . . . , m. Indeed, even
if SA,f

2 returns x and c without actually using any oracle calls, we can always construct
a new adversary that verifies c the internal f - and A-calls of c. The success probability
of the new adversary is not smaller than that of the original adversary.

Let X1 be the set that consists of r and all x ∈ {0, 1}k for which there is a pair
(c, f(c)) ∈ R1 and x ∈ c, i.e. X1 = {x|∃c : x ∈ c, (c, f(c)) ∈ R1} ∪ {r}. First,
we prove that the probability Pr

[
x ∈ X1

]
(after the attack scenario (4)) is negligible.

Indeed, otherwise it would be possible to construct a predictor ΠA,f (r, a) from SA,f
1 .

The predictor will extract the random string ω1 of SA,f
1 from the advice a. After that it

will simulate the run of S1 using A- and f -calls and will re-produce R1 and X1. The
predictor will output a random x′ from X1. Predictor ΠA,f would succeed with proba-
bility (1/|X1|) · Pr

[
x ∈ X1

]
. As SA,f = (SA,f

1 , SA,f
2 ) is assumed to be unpredictable

in terms of (2), we have Pr
[
x ∈ X1

]
= k−ω(1).

Note that even if ω1 cannot be extracted from a, a suitable predictor can still be
constructed from SA,f

2 . Indeed, if Pr
[
x ∈ X1

]
	= k−ω(1), then due to the polynomial

size of X1 there is an element x0 ∈ X1 so that α(k) := Pr [x = x0] 	= k−ω(1), and
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Fig. 2. Hash-chain c = (c1, . . . , cm) and the sets R1 and R2 after a successful run of SA,f

therefore the probability that the same x is produced by two independent executions
of SA,f

2 (r, a) (with fixed r and a) is at least α2(k) 	= k−ω(1). Therefore, a predictor
ΠA,f(r, a) that simply executes (x, c) ← SA,f

2 (r, a) and outputs x will succeed with
non-negligible probability.

Hence, x 	∈ X1 with probability 1 − k−ω(1). So, for the attack to be successful with
non-negligible probability, the second stage SA,f

2 should be able to find a pair ci such
that f(ci) ∈ X1 but there is xi ∈ ci so that xi 	∈ X1. To show that this is possible only
with negligible probability, we will analyze the work of SA,f

2 .
Let Qj denote the j-th oracle query (A-query or f -query) made by SA,f

2 (r, a) and
Δj denote the event that:

1) During Qj a pair (y, f(y)) has been found such that f(y) ∈ X1 but there is x′ ∈ y
such that x′ 	∈ X1. We call such a pair (y, f(y)) a hit.

2) No hits occured during the previous calls Q1, . . . , Qj−1.

Let the probability of getting a hit at step j be δj = Pr [Δj ]. If Qj is an f -query, then
we note the probability of having the first hit at step j by δf

j and in the case of an A-
query we denote this probability by δA

j . The total probability of success δS(k) can then
be estimated with the following sum over all oracle queries:

δS(k) ≤
∑

f -queries

δf
j +

∑
A-queries

δA
j .

If Qj is an f -query, then obviously δf
j = Pr [Δj ] ≤ |X1|

2k , because f is a random
function. Recall also that the running time of each f -query is 1.

If Qj is an A-query (say A(”F f ”))1, then we estimate Pr [Δj ] as follows. We will
denote by Δj(F f (X)) and Δj(F f (X ′)) the events of having a hit in F f (X) and in
F f (X ′), respectively. As X and X ′ are identically distributed, the events Δj(F f (X))

1 The choice of F f varies in the A-queries made by SA,f .
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and Δj(F f (X ′)) are equally probable, no matter that the generation of X ′ (after X is
fixed) requires ”super-human” knowledge about F f . Therefore,

Pr [Δj ] ≤ Pr
[
Δj(F f (X))

]
+ Pr

[
Δj(F f (X ′))

]
= 2 · Pr

[
Δj(F f (X))

]
.

Let cf (”F f ”) denote the number of f -gates in ”F f ”. By assumption, we have a natural
order in which the f -calls are performed inside the computation of F f (X). If a hit
occurs during this computation at all, then one of the f -calls must certainly be the first

hit, which as we already estimated, occurs with probability |X1|
2k . Thereby, for A-queries

we have

Pr [Δj ] ≤ 2 · Pr
[
Δj(F f (X))

]
≤ 2 · cf (”F f ”) · |X1|

2k
,

and the total success probability of S can be estimated as follows:

δS(k) ≤
∑

f -queries

|X1|
2k

+
∑

A-queries A(”F f
j ”)

2 · cf (”F f
j ”) · |X1|

2k

=
|X1|
2k

⎛
⎜⎜⎝

∑
f -queries

1 +
∑

A-queries A(”F f
j ”)

2 · cf (”F f
j ”)

⎞
⎟⎟⎠ ≤ |X1|

2k
· tS(k)

=
kO(1)

2k
· kO(1) = k−ω(1) ,

where tS(k) is the total running time of S. The last inequality follows from the obser-
vation that tS(k) cannot be smaller than the time spent for oracle calls. ��

6 Remark on a Poor Choice of A

Like in [12], the particular choice of the A-oracle is very important. For example, if one
chooses A so that given a description of ”F f ” it returns a uniformly chosen collision
from the set {(X, X ′) : F f (X) = F f (X ′)} of all collisions (including the trivial ones
with X = X ′), then such A can be abused to break the hash-based time-stamping
system Tf . The adversary SA,f = (SA,f

1 , SA,f
2 ) is defined as follows:

1) SA,f
1 (1k) assigns a = 02k computes r = f(a) and outputs (r, a).

2) SA,f
2 (r, a) picks z ← {0, 1}4k−1, builds a description ”F f

r,z,k” of a function of type

F f
r,z,k : {0, 1}4k→{0, 1}4k−1, which is defined as follows:

F f
r,z,k(x) =

{
z if f(x{1...2k}) = r
x{1...4k−1} if f(x{1...2k}) 	= r ,

SA,f
2 (r, a) then calls (X, X ′) ← A(”F f

r,z,k”) and returns (X{1...k}, X{1...2k}).

The success probability of SA,f relies on finding collisions for F f by A. There are two
types of collisions of F f :
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(1) First type. The collisions (x, x′) where F f (x) = F f (x′) = z. This happens when
f(x{1...2k}) = f(x′

{1...2k}) = r. There are at least 22k F -preimages of z because

F f
r,z,k(02k‖y) = z for every y ∈ {0, 1}2k. The number of first type collisions is

thereby at least 22k · 22k − 22k = 24k − 22k. Let the exact number of pre-images
of z be 22k + C for some C ≥ 0. Hence, the exact number of collisions of the first
type is

(
22k + C

) (
22k + C − 1

)
.

(2) Second type. The collisions (x, x′) where F f (x) = F f(x′) 	= z. For any z′ 	= z
there are only two F -preimages: z′‖0 and z′‖1. Thus, there are at most 24k−22k−C
collisions of the second type.

If S2 produces a collision of the first type, then by definition F f
r,z,k = z. Hence, for

x = X{1...k} and c = X{1...2k} we have Ff (x, c) = r and S successfully back-dates x.
So, for k > 0 we get the success probability of SA,f

δS(k) ≥
(
22k + C

) (
22k + C − 1

)
(22k + C) (22k + C − 1) + 24k − 22k − C

=

(
22k + C

) (
22k + C − 1

)
2 · (22k + C) (22k + C − 1) − 2C · 22k − C2 ≥ 1

2
.

The adversary SA,f is unpredictable in terms of (2) because of the use of z by A2 and
the assumption that random coins for different function descriptions are independent.
This means that the output of A2 has at least k bits of Rényi entropy. Therefore, SA,f

breaks the time-stamping scheme Tf with success 1
2 .

7 Conclusions and Open Questions

Probably, our separation result can be generalized in order to show that there are no
semi-black-box reductions from collision-free hash functions to secure time-stamping
schemes.

It would also be interesting to study the relations between one-way functions and
time-stamping schemes. If we can construct time-stamping schemes from one-way
functions (or equivalently, from universal one-way hash functions) this would mean
that the result of this paper is a direct consequence from the work of Simon [12]. In-
deed, if there was a construction of a collision-free hash function from a time-stamping
scheme, then by composing two reductions we would obtain a black-box construction
of a collision-free hash function from a one-way function, which is impossible by [12].

A very intriguing open question is whether there is an oracle relative to which every
function is invertible (not one-way) but still secure time-stamping schemes exist—this
would be an extension of the result of Buldas and Laur [2] who showed that secure hash-
tree time-stamping schemes can be built based on hash functions that are not one-way.
If such an oracle does not exist, the question is, can we construct one-way functions
from black-box time-stamping schemes? So far, neither of these two possibilities is
either proven or has informal confirmations.
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Abstract. Game-playing is an approach to write security proofs that
are easy to verify. In this approach, security definitions and intractable
problems are written as programs called games and reductionist secu-
rity proofs are sequences of game transformations. This bias towards
programming languages suggests the implementation of a tool based on
compiler techniques (syntactic program transformations) to build secu-
rity proofs, but it also raises the question of the soundness of such a tool.
In this paper, we advocate the formalization of game-playing in a proof
assistant as a tool to build security proofs. In a proof assistant, starting
from just the formal definition of a probabilistic programming language,
all the properties required in game-based security proofs can be proved
internally as lemmas whose soundness is ensured by proof theory. Con-
cretely, we show how to formalize the game-playing framework of Bellare
and Rogaway in the Coq proof assistant, how to prove formally reusable
lemmas such as the fundamental lemma of game-playing, and how to use
them to formally prove the PRP/PRF Switching Lemma.

1 Introduction

Game-playing is an approach to write security proofs that are easy to verify.
In this approach, security definitions and intractable problems are written as
programs called games and reductionist security proofs are sequences of game
transformations [6,7,8].

The bias of game-playing towards programming languages suggests the im-
plementation of a tool based on compiler techniques to build security proofs [9],
but it also raises the question of the soundness of such a tool. To make our
point clearer, let us consider CryptoVerif [13], a pioneer implementation of game-
playing that has been applied to several standard cryptographic schemes taken
from the literature [4,5]. To perform game transformations, CryptoVerif im-
plements techniques of compiler optimization (constant propagation, dead-code
elimination, etc.). The latter program transformations sometimes rely on high-
level program equivalences that are only proved on paper and introduced in
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CryptoVerif as axioms (see Appendix B of [13]). This can be seen as an impor-
tant limitation of CryptoVerif because it endangers its soundness.

In this paper, we advocate the formalization of game-playing in a proof as-
sistant as a tool to build security proofs. In a proof assistant, starting from just
the formal definition of a probabilistic programming language, all the proper-
ties required in game-based security proofs can be proved internally as lemmas
whose soundness is ensured by proof theory: no game transformation needs to be
proved out of the box. Concretely, we show how to formalize the game-playing
framework of Bellare and Rogaway [7] in the Coq proof assistant [1], how to prove
formally reusable lemmas such as the fundamental lemma of game-playing, and
how to use these lemmas to formally prove the PRP/PRF Switching Lemma.
To our knowledge, this is the first formalization of game-playing with a random
oracle and a working fundamental lemma used in a complete use-case.

About the Coq Proof Assistant. The Coq proof assistant [1] is an implementa-
tion of proof theory developed at INRIA in France since 1984. It provides a
higher-order logic (i.e., even predicates can be quantified) to state mathematical
properties and a functional programming language to build proofs. This setting
stems from the Curry-Howard isomorphism [2], through which logical formulas
are considered as types of functional programs that are themselves considered
as proofs. This makes up for a very small and well-understood proof-checking
mechanism that justifies the reliability of proof assistants. Proof assistants are
now reasonably mature tools and, in particular, the Coq proof assistant recently
made it possible for several important achievements such as the formalization of
the four color theorem or the certification of a C compiler.

Notations in this Paper. All the definitions and lemmas in this paper are written
in the Coq syntax. This syntax uses only ASCII characters; the mathematical
notations are just to ease reading (for example, we write ∀ instead of the Coq
forall construct, ∧ instead of /\, etc.). We display Coq code as it appears in
our formalization. To improve understanding, we sometimes put comments (be-
tween (* and *) ) or hide non-relevant parts (using “...”). In our experience,
using the Coq syntax in this way is the best way to present a formalization
because it avoids ambiguities while being accessible to readers with little fa-
miliarity with formal methods or functional programming languages. There are
some Coq-specific constructs, but we introduce them gently in the first sections.
We concentrate on the main points of the formalization (basic definitions and
statements of lemmas) and do not enter the details of formal proofs; for technical
inquiries, the complete Coq development is available online [16].

The rest of this paper is organized as follows. In Sect. 2, we explain how we for-
malize the notions of distribution and probability in Coq. In Sect. 3, we explain
how we formalize random oracles and a probabilistic programming language to
write games. In Sect. 4, we formalize a version of the fundamental lemma of
game-playing, the most important tool for game-playing. In Sect. 5, we apply
our formalization of the game-playing framework to the proof of the PRP/PRF
Switching Lemma. We review related work in Sect. 6 and conclude in Sect. 7.
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2 Formalization of Probabilities

In this section, we explain how we formalize the notion of distribution of states
and the notion of probability. We consider a probability space made of determin-
istic states and we call probabilistic state a distribution of deterministic states.
As far as the formalization of distributions is concerned, we do not commit
ourselves to any particular kind of states (this makes our formalization more
reusable). In type parlance, we just assume that all deterministic states belong
to some type A and pursue formalization using this type. In Coq, types them-
selves have types, and we declare the type A to belong to the predefined type Set

of data structures. This is achieved by the declaration Variable A : Set.

In later sections, we instantiate the type A with a concrete notion of deter-
ministic state. For example, let us assume that deterministic states are stores,
i.e., sets of pairs of variables and values. We can use the standard Coq natural
numbers (type nat of type Set) to formalize variables and values, and Coq lists
(type list of type Set) to formalize stores. Variables are defined to be naturals
using the definition Definition var := nat. Stores are defined to be lists of pairs
of variables and naturals by Definition store := list (var * nat). Since lists
belong to Set, so do stores, and therefore we can substitute A for store to obtain
a formalization of distributions of stores.

2.1 Formalization of Distributions

A distribution of deterministic states is a map from deterministic states to real
numbers, such that the real numbers associated with a given deterministic state
represent the weight of this state in the map. Given the Coq reals (type R) and our
type A of deterministic states, we define distributions to be lists of appropriate
type: Definition distrib := list (R * A).

There is little point in having distributions with deterministic states associ-
ated with negative or null reals. The Coq way to enforce this is to introduce a
logical predicate to sort out devious distributions. Like there is the predefined
type Set for data structures, there is the predefined type Prop for logical pred-
icates. Logical predicates in Coq are just definitions with type Prop. A logical
predicate that holds only for distributions with strictly positive reals (hereafter,
coefficients) has to go recursively through the underlying list to check the sign of
coefficients. Such recursive definitions are introduced by the keyword Fixpoint:

(* A distribution d has positive coefficients... *)
Fixpoint coeff_pos (d : distrib) : Prop :=

match d with
(* if its head and its tail have positive coefficients... *)
| (p, _) :: tl => 0 < p ∧ coeff_pos tl
(* or if it is empty.*)
| nil => True

end.

In our formalization, we do not insist on having the sum of coefficients of dis-
tributions equal to 1, as it is customary with probabilities. We made this choice
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for convenience because of if-then-else constructs in the language of games. Even
if we insisted on normalizing probabilities, as soon as the control-flow enters a
branch, the distribution is partitioned, and the sum of coefficients in each branch
cannot be guaranteed to be equal to the sum of coefficients before the branch
(this observation is made in [12]). We therefore express probabilities with respect
to the sum of coefficients of the very first distribution. Sums of coefficients are
computed with the following recursive function:

Fixpoint sum (d : distrib) : R :=
match d with (p, _) :: tl => p + sum tl | nil => 0 end.

2.2 Probability of Events

We identify events with boolean functions over deterministic states, that is to
say Definition event := A → bool. The probability that an event holds in
a distribution is equal to the sum of the coefficients associated with the de-
terministic states in which this event holds. To sort out relevant deterministic
states, we use a function filter that selects only those states such that the event
e holds (++ is the notation for the Coq function that appends lists):

Fixpoint filter (e : event) (d : distrib) : distrib :=
match d with

| (p, a) :: tl => (if e a then (p, a) :: nil else nil) ++ filter e tl
| nil => nil

end.

The probability Pr that an event e holds in a distribution d immediately follows
from the definition of sum and filter:

Definition Pr (e : event) (d : distrib) : R := sum (filter e d).

Equipped with above definitions of distributions, events and probabilities, we can
define concrete events (using Coq standard boolean functions orb, andb, negb,
etc.) and prove formally well-known facts in probability theory:

(* standard definitions *)
Definition union (e1 e2 : event) (a : A) : event := orb (e1 a) (e2 a).
(* Notation: ∪ *)

Definition inter (e1 e2 : event) (a : A) : event := andb (e1 a) (e2 a).
(* Notation: ∩ *)

Definition cplt (e : event) (a : A) : event := negb (e a).
(* Notation: ¯ *)

...
(* well-known facts *)
Lemma Pr_union_inter : ∀ d e1 e2,
Pr (e1 ∪ e2) d = Pr e1 d + Pr e2 d - Pr (e1 ∩ e2) d.

Lemma Pr_distributivity : ∀ d e1 e2 e3,
Pr (e1 ∩ (e2 ∪ e3)) d = Pr ((e1 ∩ e2) ∪ (e1 ∩ e3)) d.

Lemma Pr_cplt: ∀ d e, Pr e d = sum d - Pr e d.
...
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2.3 Transformations of Distributions

Our formalization of distributions also features functions that transform dis-
tributions according to operations such as random sampling. Let us consider
a concrete example of what these transformations are supposed to achieve.
We take stores of variables (as defined at the beginning of this section) for
deterministic states. Let us assume that we are given the probabilistic state
(p0, x = 0), (p1, x = 1) and that we perform a random sampling with probability
0 < p < 1 of the variable y from the set {0, 1}. The effect of this random sam-
pling is to multiply the original distribution by the number of possible outcomes
of the random sampling (here: y = 0 or y = 1), each distribution being scaled by
the adequate probability (here: p and 1 − p), as depicted informally in Fig. 1.

(
p0, x = 0

)
,
(
p1, x = 1

)

(
p·p0, x = 0 ∧ y = 0

)
,
(
p·p1, x = 1 ∧ y = 0

) (
(1−p)·p0, x = 0 ∧ y = 1

)
,
(
(1−p) · p1, x = 1 ∧ y = 1

)

Fig. 1. Effect on a distribution of the random sampling y
p← {0, 1}

The function fork below implements the most general form of transformation
illustrated above. It takes as input a distribution d and a list l of real scaling
factors and functions that transform deterministic states:

Fixpoint fork (l : list (R * (A → A))) (d : distrib) : distrib :=
match l with

| (k, f) :: tl => map f (scale k d) ++ fork tl d
| nil => nil

end.

(The function map applies a function to each deterministic state of a distribution,
the function scale multiplies each coefficient by the same real; Coq code omitted
to save space.) For example, the transformation depicted in Fig. 1 is performed by
the function call fork ((p, update y O)::(1-p, update y 1)::nil) where update
is a function that updates stores.

3 Formalization of a Probabilistic Language for Games

3.1 Random Oracle

A random oracle is a data structure used in security proofs to represent a pseu-
dorandom function or a hash function. Concretely, it is a map from a set of
bitstrings to uniformly and independently sampled bitstrings. From a program-
ming language perspective, a random oracle can be thought of as a hash table
with random values, as depicted in Fig. 2. Indeed, like a hash table, insertion of
new records (key-value pairs) and retrieval of the value associated with a key are
the most important operations. In security proofs, it is also important to be able
to look for already allocated keys or values, to talk about the ith inserted record,
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Fig. 2. A simple random oracle

to know the number of records, etc. The
most reusable way to formalize such a rich
data structure is via an abstract datatype,
i.e., a type that is known to enjoy some
properties but whose formalization is hid-
den. In Coq, abstract datatypes are formal-
ized with modules. Here follows the type of
a module for an abstract datatype t that
enjoys the properties of a random oracle:

Module Type ORACLE.
Parameter t : Set.
Parameter empty : t.
Definition key := nat.
Definition value := nat.

(* access functions *)
Parameter length : t → nat.
Parameter insert : key → value → t → t.
Parameter nth_key : nat → t → (*default*) key → key.
Parameter nth_value : nat → t → (*default*) value → value.
Parameter find_key : key → t → nat.
Parameter find_value : value → t → nat.
...
(* properties *)
Parameter insert_new_len : ∀ o k v,

find_key k o = O → length (insert k v o) = length o + 1.
...
End ORACLE.

In the following, we use a module oracle of type ORACLE such that oracle.t is
the type of our random oracles. Each time we need to manipulate an oracle, we
can use functions such as oracle.length and we know that they satisfy prop-
erties such as oracle.insert_new_len. Observe that we use naturals instead of
bitstrings but we are careful to keep track of cardinality information; in the fu-
ture, we plan to use instead the module for machine integers from [14] so that we
can handle more faithfully security proofs that make a precise usage of bitstrings
(such as the security proof of PSS [5]). For the time being, we have just specified
the oracle module. A random oracle with one value per key can be implemented
on the model of the finite map from [11]; however, most security proofs require
random oracles with several values per key, so that we defer to future work the
formalization of a module that accommodates such generality.

3.2 Execution State

The random oracle from Sect. 3.1 is only one part of the execution state of games.
The other part is the store of variables as we defined in Sect. 2. A deterministic
state dstate is therefore a pair of a store and an oracle. It is possible to access a
deterministic state to lookup for the value of a variable, or to update the value
of a variable (using functions lookup and update respectively):



Formal Proof of Provable Security by Game-Playing in a Proof Assistant 157

Definition dstate := store * oracle.t.
Definition lookup (v:var) (d:dstate) : nat := ...
Definition update (v:var) (n:nat) (d:dstate) : dstate := ...

Finally, a probabilistic state is a distribution (as defined in Sect. 2) of determin-
istic states: Definition pstate := distrib dstate.

3.3 Programming Language

Our probabilistic programming language is an imperative language with random
sampling and function calls built after [7].

The expressions expr of our programming language contain variables, integer
constants, and a C-like negation operator (this can be easily extended but is
sufficient for our purpose in this paper):

Inductive expr : Set :=
var_e : var → expr | int_e : nat → expr | neg_e : expr → expr.

An expression is a datatype so it belongs to Set; since an expression can be made
up of other expressions, the expr type is introduced by the keyword Inductive.
Everytime the Inductive keyword is used, Coq generates an induction principle
for the datatype that allows for proof by induction. An expression e can be
evaluated in a deterministic state ds using the function eval:

Fixpoint eval (e:expr) (ds:dstate) : nat := ...

We now define the commands of our programming language. Random sampling
is available through two commands: x <-$- n (notation for sample_n x n) uni-
formly samples a natural from the interval [0, n − 1], and x <-b- p (notation
for sample_b x p) samples a boolean (in fact, a natural among 0 and 1) with
probability 0 < p < 1. For the random oracle, there are two commands to access
it: insert k v adds a new record (k,v), find_value x e tests for the occurrence
of the value e and sets the variable x accordingly. It is possible to put together
atomic commands using control-flow commands: c1;c2 (notation for seq c1 c2)
represents a sequence of commands, ifte b c1 c2 represents an if-then-else with
condition b (an expression) and two branches c1 and c2. Other commands’ names
are self-explanatory:

Definition fun_id := nat.
Inductive cmd : Set :=
| skip : cmd
| assign : var → expr → cmd (* Notation: <- *)
| sample_n : var → nat → cmd (* Notation: <-$- *)
| sample_b : var → R → cmd (* Notation: <-b- *)
| find_value : var → expr → cmd
| insert : expr → expr → cmd
| ifte : expr → cmd → cmd → cmd
| seq : cmd → cmd → cmd (* Notation: ; *)
| call : fun_id → cmd.
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Like expressions, commands are just another datatype belonging to Set and the
Inductive keyword provides us with an induction principle to reason about the
syntax of games.

So far we have only defined the syntax of games without giving them mean-
ing. Now we define their semantics. We do that by formalizing an operational
semantics [3] with the logical predicate ||- -- --> (notation for (exec ))
between (1) an environment (a set of function ids and commands), (2) a starting
probabilistic state, (3) a command, and (4) a resulting probabilistic state:

Definition prog := list (fun_id * cmd).
Inductive exec (prg : prog) : pstate → cmd → pstate → Prop := ...

Because this is a logical predicate it belongs to type Prop. It is also defined
using the Inductive keyword so that Coq provides an induction principle to
reason by induction on the execution of games; this induction principle is used
pervasively in our formal proofs. Let us illustrate the exec predicate with the
operational semantics of random sampling commands (the complete predicate
can be found in Appendix A). The constructor exec_sample_b formalizes the
semantics of (possibly non-uniform) boolean sampling:

| exec_sample_b : ∀ x p st, 0 < p < 1 →
prg ||- st -- x <-b- p -->

fork ((p, update x 1)::(1-p, update x O)::nil) st

Starting from a probabilistic state st, the command x <-b- n yields a probabilis-
tic state fork ((p, update x 1)::(1-p, update x O)::nil) st. This transforma-
tion actually corresponds to the situation depicted in Fig. 1, Sect. 2.3, where the
function fork has been explained. The constructor exec_sample_n formalizes the
semantics of uniform random sampling:

| exec_sample_n: ∀ x n st, n > O →
prg ||- st -- x <-$- n --> fork (sample_n_fork_distrib O n n x) st

Starting from a probabilistic state st, the command x <-$- n yields a prob-
abilistic state fork (sample_n_fork_distrib O n n x) st. The function appli-
cation sample_n_fork_distrib produces an appropriate list of scaling factors
and state transformations: (1/n, update x O)::(1/n, update x 1)::· · · ::(1/n,
update x (n-1)). It is defined by recursion on the size of the sample space:

Fixpoint sample_n_fork_distrib
(min span card:nat) (v:var) : list (R * (dstate -> dstate)) :=

match span with
| O => nil
| S span’ => (1/INR card, fun x => update v (min + span’) x) ::

sample_n_fork_distrib min span’ card v
end.

(The constructor S is the successor function of naturals; the function INR injects
naturals into reals; the construct fun x => ... corresponds to an anonymous
function, i.e., it is equivalent to Definition anonymous_function x := ...)
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Loop Constructs. In security proofs, the computational power of the adversary
is always bounded. As a consequence, we do not need any general form of while-
loops and we can get along with macros for looping constructs. For example, the
function below represents i copies of some parameterized loop body:

Fixpoint loop (i : nat) (c : nat → cmd) : cmd :=
match n with

| O => skip
| S j => loop j c; c j

end.

3.4 Properties of the Probabilistic Language of Games

Using the probabilistic programming language defined above, we have formally
proved in Coq several reusable lemmas to reason about games. The most impor-
tant of these lemmas is the fundamental lemma of game-playing that is explained
in Sect. 4. There are many other useful lemmas. The most important of them
are those that capture the properties of random sampling, answering questions
such as: “What is the probability that two random variables are equal?” Such a
question arises for example when comparing the value stored in a random oracle
with a newly sampled value.

For illustration, let us consider the case of two uniformly sampled values.
In Coq, lemmas are proved interactively in a special mode entered in via the
keyword Lemma. The lemma corresponding to the question above consists of two
hypotheses. First, we are given an execution step of a game: it goes from state st

to state st’ by performing a uniform random sampling whose outcome is stored
in variable x (this is hypo 1 below). Second, we are given a function f that
retrieves values from the oracle and we know that in state st these values are
uniformaly distributed with probability p (this is hypo 2 below). The conclusion
of the lemma states that the probability that the value of x is equal to the value
retrieved by f is also p:

Lemma exec_sample_n_twice_Pr : ∀ x n st st’ prg,
(* hypo 1 *) prg ||- st -- x <-$- n --> st’ →
∀ (f:oracle.t → nat) p,
(* hypo 2 *) (∀ m, m < n →

Pr (fun s => beq_nat m (f (get_oracle s))) st = p * sum st) →
(* conclusion *)
Pr (fun s => beq_nat (lookup x s) (f (get_oracle s))) st’ = p * sum st’

(get_oracle is a function that extracts the oracle from a deterministic state;
beq_nat tests natural numbers for equality and returns a Coq boolean.)

4 The Fundamental Lemma of Game-Playing

In game-playing, each game represents a sequence of interactions with the adver-
sary, and a security proof consists of a sequence of game transformations. During
game-transformation steps, we keep track of the bounds incurred in probabil-
ity changes in order to derive a bound on the probability that the adversary
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wins. This is often achieved by application of the “fundamental lemma of game-
playing” [6,7,8].

4.1 Probabilistic Account

Assume one wants to know the difference Rabs(Pr e d1 - Pr e d2) of probabil-
ities of some event e in two different probability distributions d1 and d2 (Rabs is
the absolute value in Coq). One way to bound this value is to analyze the event e
with respect to some other event f so that the event e can be partitioned into
events e ∩ f and e ∩ f. Then one has Pr e d1 = Pr (e ∩ f) d1 + Pr (e ∩ f) d1,
and similarly for d2.

The lemma below is a version of the fundamental lemma of game-playing with
only distributions (games will be added in the next section). It states that, under
the hypothesis Pr (e ∩ f) d1 = Pr (e ∩ f) d2 (i), we have a simple bound1:

Lemma abstract_fundamental_lemma : ∀ d1 d2 e f r, 0 ≤ r →
sum d1 = sum d2 → coeff_pos d1 → coeff_pos d2 →

Pr f d1 = Pr f d2 = r → Pr (e ∩ f) d1 = Pr (e ∩ f) d2 →
Rabs(Pr e d1 - Pr e d2) ≤ r.

The hypotheses sum d1 = sum d2, coeff_pos d1 and coeff_pos d2 come from how
we formalize distributions, see Sect. 2.1. This lemma is proved in Coq as follows:
first use the equality (i) to eliminate the terms with f, then the difference becomes
Rabs(Pr (e ∩ f) d1 - Pr (e ∩ f) d2), which is easily seen to be bounded by the
probability r that f occurs.

4.2 Identical-Until-Bad Games

The lemma of the previous section does not say anything about games, but it
can actually be used to transform one game to another if they are “identical-
until-bad”, a syntactic property that can be automatically verified in Coq for
the probabilistic language we introduced earlier.

The property “identical-until-bad” [7] assumes the existence of a special variable
conventionally called bad that can be set only once. Two games are “identical-until-
bad” when they have the same syntax tree except for those subtrees following the
command bad <- 1. We formalize the property “identical-until-bad” using the log-
ical predicates no_assign_cmd and no_assign that check for variable assignments;
this is not the most general formalization but it is sufficient for our purpose in this
paper. For example, assume that we have three commands c1, c2, c2’ such that
no_assign_cmd bad holds, and a program prg such that no_assign bad holds. Then
the following two programs are “identical-until-bad”:

prg ||- -- ifte b
c1
(bad <- int_e 1; c2) -->

prg ||- -- ifte b
c1
(bad <- int_e 1; c2’) -->

1 This lemma can actually be generalized to use two pairs of different events e1, e2
and f1, f2 in two different probability distributions d1 and d2 and with a bound
equal to the maximum of Pr f1 d1 and Pr f2 d2.
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The following example shows “identical-until-bad” games containing a loop; here,
commands c1, c2, c2’, c3, and all c0 i for 0 ≤ i < q satisfy no_assign_cmd bad,
and the program prg satisfies no_assign bad:

prg ||- -- loop q (fun i =>
c0 i;
ifte b

c1
(bad <- int_e 1; c2);

c3) -->

prg ||- -- loop q (fun i =>
c0 i;
ifte b

c1
(bad <- int_e 1; c2’);

c3) -->

4.3 Fundamental Lemma of Game-Playing: Formal Statement

In this section, we show how to formally state and prove the fundamental lemma
of game-playing. For this purpose, we use the lemma of Sect. 4.1 and the property
“identical-until-bad” of Sect. 4.2. The relation between the abstract fundamental
lemma and the property “identical-until-bad” is the event “the variable bad is
set to one”. We identify the event e in Sect. 4.1 with the event that the adversary
wins, and the event f with the event sets bad 1 where sets is defined as follows:

Definition sets (v:var) (n:nat) : event dstate :=
fun s => beq_nat (lookup v s) n.

Keeping this relation in mind, we can now state the fundamental lemma of game-
playing. First, we take two “identical-until-bad” games. As seen in Sect. 4.2, this
boils down to automatically check some no_assign bad and no_assign_cmd bad

logical predicates. For concreteness, let us consider the two games of the Switch-
ing Lemma. Second, we take two initial distributions st and st’ such that:

Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) (ii)

With these hypotheses, the following fundamental lemma of game-playing can
be proved formally in Coq (no_assign_cmd_list is a variant of the no_assign_cmd

predicate):

Lemma fundamental_lemma :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 e q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ → sum st = sum st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2 ); c3) --> end →
prg ||- st’ --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’→
Rabs (Pr e end - Pr e end’) <= Pr (sets bad 1) end.

A detailed account of the proof of this lemma can be found in Appendix B. The
next section shows how it can be concretely applied.
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5 The PRP/PRF Switching Lemma

The PRP/PRF Switching Lemma is used in security proofs of cryptographic
schemes based on block ciphers. Although block ciphers are assumed to behave
as pseudorandom permutations (PRP), it is easier to consider them as pseudo-
random functions (PRF) in security proofs. The Switching Lemma quantifies in
terms of probabilities the difference induced by this approximation. As explained
in [7], it is non-trivial to prove this lemma correctly; here follows a formal proof.

5.1 Formal Statement

The proof of the Switching Lemma in game-playing assumes an adversary A that
does q queries to two games G0 and G1 that represent respectively a pseudoran-
dom function and a pseudorandom permutation:

Definition G0’ bad (A:nat→nat) i :=
x <- int_e (A i) ;
y <-$- n ;
find_value z (var_e y) ;
ifte (var_e z)

(bad <- int_e 1)
skip;

insert (var_e x) (var_e y).

Definition G0 bad q (A:nat→nat) :=
loop q (G0’ bad A).

Definition G1’ bad (A:nat→nat) i :=
x <- int_e (A i) ;
y <-$- n ;
find_value z (var_e y) ;
ifte (var_e z)
(bad <- int_e 1; any)
skip;

insert (var_e x) (var_e y).

Definition G1 bad q (A:nat→nat) :=
loop q (G1’ bad A).

The bad variable is set when the function built is not a permutation. The differ-
ence between the two games is that, when bad is set, G1 performs a command any.
This command can be anything that does not modify bad; in practice, any sam-
ples y again in a way such that it does build a permutation. We do not need to
be specific about what any does because it is irrelevant to the proof.

The Switching Lemma is formally stated as follows. Starting with a valid
distribution st such that bad is not set, the execution of games G0 and G1 leads
to two distributions st’ and st’’ such that the difference of the probabilities
that an event e occurs is bounded by q(q−1)

2n (where n is the cardinal of the
random sampling):

Lemma switching : ∀ q, q 	= O → ∀ A, (∀ x y, x 	= y → A x 	= A y) →
∀ st, coeff_pos st → sum st > 0 → plength O st →
Pr (sets bad 1) st = 0 →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
∀ st’’, nil ||- st -- G1 bad q A --> st’’ →
∀ e, Rabs (Pr e st’’ - Pr e st’) ≤ INR(q*(q-1))/INR(2*n) * sum st’.

5.2 Formal Proof

The proof of the Switching Lemma consists of the successive application of the
two following lemmas switching_part1 and switching_part2:
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Lemma switching_part1 : ∀ q, ∀ A, (∀ x y, x 	= y → A x 	= A y) →
∀ st, coeff_pos st →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
∀ st’’, nil ||- st -- G1 bad q A --> st’’ →
∀ e, Rabs (Pr e st’’ - Pr e st’) ≤ Pr (sets bad 1) st’.

The proof of switching_part1 is by application of the fundamental lemma of
game playing seen in Sect. 4.

The goal of the second part of the Switching Lemma is to upper-bound the
probability that the variable bad is set in game G0. This is a proof by induction
on the number of requests of the adversary but it requires a generalization to
be handled gracefully. We introduce probabilistic predicates for the purpose of
generalization. In the same way that events (defined in Sect. 2) are predicates
for deterministic states dstate, probabilistic predicates are predicates for prob-
abilistic states pstate. Technically, a probabilistic predicate is a Coq function of
type pstate → Prop. For example, the property that all the random oracles of
a probabilistic state have the same length is captured by the predicate plength:

Definition plength (len:nat) (ps:pstate) : Prop :=
∀ p ds, (p, ds) ∈ st → oracle.length (get_oracle ds) = len.

Similarly, the property that the ith key of all the random oracles of a probabilistic
state is k is captured by the predicate pnth_key and the property that the ith
value of all the random oracles of a probabilistic state is uniformly distributed
with probability 1

n is captured by the predicate pnth_value_uniform:

Definition pnth_key (i k:nat) (ps:pstate) :=
∀ p ds, (p, ds) ∈ ps → oracle.nth_key’ i (get_oracle ds) = Some k.

Definition pnth_value_uniform (i n:nat) (st:pstate) :=
∀ m, m < n →

Pr (fun s => beq_nat m (oracle.nth_value i (get_oracle s) O)) st =
1/INR n * sum st.

Using probabilistic predicates, the second part of the Switching Lemma is stated
as follows:

Lemma switching_part2 : ∀ q, q 	= O → ∀ A, (∀ x y, x 	= y → A x 	= A y) →
∀ st, coeff_pos st → sum st > 0 → plength O st →
Pr (sets bad 1) st = 0 →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
plength q st’ ∧
(∀ k, k < q → pnth_key k (A k) st’ ∧ pnth_value_uniform k n st’) ∧
Pr (sets bad 1) st’ ≤ INR(q*(q-1))/INR(2*n) * sum st’.

Intuitively, probabilistic predicates plength, pnth_key, and pnth_value_uniform

capture how the random oracle is transformed from one loop iteration to the
other: at any point of execution, the length of the oracle is equal to the number
of queries so far, the keys of the oracle correspond to the queries so far, and
associated values are all uniformly distributed. In the following, we briefly skim
through the formal proof.

The proof is by induction on the number q of adversary queries, like the proof
by induction of the Gauss formula for the sum of consecutive integers. In the
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inductive case, we are led to quantify the difference between the probabilities
that bad is set before and after an iteration of the loop:

Pr (sets bad 1) st’ ≤ Pr (sets bad 1) st + INR(q+1)/INR n * sum st’

This is equivalent to upper-bounding the probability that the randomly sam-
pled y already appears in the values of the random oracle:

Pr (fun s => beq_nat (eval (neg_e (var_e z)) s) 0) st
≤ INR(q+1)/INR n * sum st

The probability of the occurence of a value in the values of the random oracle
can be upper-bounded by the sum of the probabilities that it is equal to each
value, using the general-purpose lemma below:

Lemma Pr_iter_orb : ∀ st len e, coeff_pos st → plength len st →
Pr (fun s => (eval e s) ∈ (oracle.values (get_oracle s))) st ≤
Sum O len (fun x => Pr (fun s =>

beq_nat (eval e s) (oracle.nth_value x (get_oracle s) O)) st).

(Sum O len f is a Coq function for
∑len−1

x=0 f(x).) By the lemma from Sect. 3.4, we
know that the probability that the randomly sampled y is equal to a (randomly
sampled) value of the random oracle is 1

n :

∀ i, i < q+1 → Pr (fun s =>
beq_nat (lookup y s) (oracle.nth_value i (get_oracle s) O)) st =

1/INR n * sum st

Because this probability is a constant, the sum inherited from the previous
lemma is equal to INR(q+1)/INR n * sum st. Using the inductive hypothesis, this
completes the proof of the PRP/PRF Switching Lemma.

6 Related Work

CryptoVerif is a tool to automate proofs of cryptographic protocols in the com-
putational model. In particular, it has been applied to security proofs written
as sequences of games [13]. In CryptoVerif, games are written in a process cal-
culus and game transformations are captured by probabilistic bisimulation rela-
tions. The validity of game transformations sometimes require non-trivial manual
proofs (see Appendix B of [13]). Though our formalization of the game-playing
framework is not as rich as CryptoVerif, our Coq-centric approach provides a
way to avoid manual proofs.

Our probabilistic programming language with probabilities and probabilistic
predicates is reminiscent of probabilistic Hoare logic. The latter has been used
to build the IND-CPA security proof of the ElGamal encryption scheme [12].
Though manual, this proof is so detailed that we think it is close to being formal-
ized. Our formalization of the game-playing framework is not strictly speaking
a formalization of probabilistic Hoare logic, but it gives a good idea of the effort
it would require and, more importantly, how to extend it with random oracles
(which is not done in [12]).
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There exist other formalizations of security proofs in the Coq proof assistant.
An early work makes use of the Generic Model and of the Random Oracle Model
but without game-playing [10]. In this formalization, an adversary is defined
as an inductive set of possible actions and this allows for reasoning about its
chances to resolve a challenge. Yet, no use-case has been completely formalized
that demonstrates the effectiveness of this approach. A recent work formalizes
the IND-CPA security proof of the ElGamal encryption scheme by game-playing
in the standard model [15]. In this formalization, games are encoded directly as
Coq functions; the absence of syntax seems to simplify formal reasoning but
it is likely to hinder automation of game transformations, which are syntactic
in nature. Besides this issue, we regard this work as complementary to ours: it
provides an IND-CPA security proof using a formalization of cyclic groups that
can be easily integrated in our formalization.

7 Conclusion

In this paper, we explained a formalization of the game-playing framework of
Bellare and Rogaway in the Coq proof assistant. Our formalization features a
probabilistic language to write games and several reusable lemmas to carry out
security proofs, including in particular an instance of the fundamental lemma of
game-playing. We have illustrated the usefulness of our formalization by proving
the PRP/PRF Switching Lemma. The complete Coq development is available
online [16]. To our knowledge this is the first formalization of game-playing with
a random oracle and a working fundamental lemma used in a complete use-case.

Future Work. For the time being, the fundamental lemma of game-playing as it
appears in Sect. 4 can only be applied to a restricted set of games. Of course,
we can easily formalize variants on the same model, but ideally it should be
generalized so as to encompass any pair of “identical-until-bad” games [7].

We already have a good idea of how to extend our formalization of the game-
playing framework to carry out the security proof of the Full-domain Hash sig-
nature scheme from [8]. This will require a formalization of random oracles with
several values per key and, more importantly, introduce concurrency issues aris-
ing from the parallel execution of several oracles.
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| exec_sample_b : ∀ x p st, 0 < p < 1 →
prg ||- st -- x <-b- p -->

fork ((p, update x 1)::(1-p, update x O)::nil ) st

| exec_find_value : ∀ x st e,
prg ||- st -- find_value x e -->

fork ((1, fun s =>
update x (oracle.find_value (eval e s) (get_oracle s)) s)::nil) st

| exec_sample_n: ∀ x n st, n > O →
prg ||- st -- x <-$- n --> fork (sample_n_fork_distrib O n n x) st

| exec_ifte : ∀ e c d st st_true st_false stc std,
st_true = filter (fun s => beq_nat (eval (neg_e e) s) O) st →

st_false = filter (fun s => beq_nat (eval e s) O) st →
prg ||- st_true -- c --> stc →

prg ||- st_false -- d --> std →
prg ||- st -- ifte e c d --> stc ++ std

| exec_seq : ∀ st st’’ st’ c d,
prg ||- st -- c --> st’’ →

prg ||- st’’ -- d --> st’ →
prg ||- st -- c ; d --> st’

| exec_insert : ∀ st e e’,
prg ||- st -- insert e e’ -->

fork ((1, fun s => (get_store s,
oracle.insert (eval e s) (eval e’ s) (get_oracle s)))::nil) st

| exec_call : ∀ st st’ callee c,
get_fun_cmd prg callee = Some c →

prg ||- st -- c --> st’ →
prg ||- st -- call callee --> st’

where "prg ||- st -- c --> st’" := (exec prg st c st’).

B Proof Sketch for the Lemma of Sect. 4.3

In order to prove the fundamental lemma of game-playing, we need the fol-
lowing two lemmas identical_until_bad and after_bad_is_set that relate the
condition (ii) and the executions of “identical-until-bad” commands. The lemma
identical_until_bad states that, given two games that are “identical-until-bad”
(defined with no_assign_cmd bad and no_assign bad predicates), the condition(ii)
is preserved by the execution of the games:
Lemma identical_until_bad :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2); c3) --> end →
prg ||- st’ --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’ →
Permutation (filter (sets bad 1) end) (filter (sets bad 1) end’).
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Concerning the lemma after_bad_is_set, note that when both (ii) and sum st

= sum st’ hold, the two initial distributions of the execution have the same
probabilities for the sets bad 1 event. The lemma states that this property is
also preserved after the execution of “identical-until-bad” games:

Lemma after_bad_is_set :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ → sum st = sum st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2); c3) --> end →
prg ||- st’ --

loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’ →
Pr (sets bad 1) end = Pr (sets bad 1) end’.

The proof of the fundamental lemma of game-playing proceeds along the lines
of the proof of the abstract fundamental lemma of Sect. 4.1. First, we prove
Pr (sets bad 1) end = Pr (sets bad 1) end’ by direct application of the lemma
after_bad_is_set. Second, using the lemma identical_until_bad we prove

Pr (f ∩ (sets bad 1)) end = Pr (f ∩ (sets bad 1)) end’

which is equivalent to the condition (i) in Sect. 4.1. We use this equality to
eliminate the terms with complement. Then the difference becomes

Rabs (Pr (f ∩ (sets bad 1)) end - Pr (f ∩ (sets bad 1)) end’)

and the rest of the argument is exactly the same as the case of abstract funda-
mental lemma.
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Abstract. We revisit Shin et al.’s leakage-resilient password-based au-
thenticated key establishment protocol (LR-AKEP) and the security
model used to prove the security of LR-AKEP. By refining the Leak ora-
cle in the security model, we show that LR-AKE (1) can, in fact, achieve
a stronger notion of leakage-resilience than initially claimed and (2) also
achieve an additional feature of traceability, not previously mentioned.
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1 Introduction

Authenticated Key Establishment protocols (AKEPs) allow two parties to share
a secret key based on long-term secrets associated with individual entities (typi-
cally passwords). Passwords are strings easily memorized by humans and thus of
low entropy. Such protocols are especially popular in computationally restricted
devices and those requiring interaction with human users. For example, in prac-
tical applications, the secrets derived from passwords are stored in some devices
(e.g., a table containing hashed values of passwords kept by a trusted server).
A fundamental security threat for password-based AKEPs is, unsurprisingly,
dictionary attacks due to low entropy of password-based AKEPs.

We revisit the leakage-resilient password-based AKEPs (LR-AKEPs), first
proposed by Shin, Kobara and Imai [7] and subsequently extended in [4,8,9,10].
LR-AKEPs, designed to maintain the secrecy of the long-term password even
in the case when stored secrets (i.e., functions of the password) are leaked, can
be broadly categorised into two families: the Diffie–Hellman-based LR-AKEPs
[7,8,9] and the RSA-based LR-AKEPs [4,10].
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Widely used security models for AKEPs (including password-based AKEPs)
include the indistinguishability-based models of Bellare, Pointcheval, and Rog-
away [1] model (hereafter referred to as the BPR2000 model) and Canetti and
Krawczyk [2]1. In the BPR2000 model, leakages of established secret session keys
and long-term secrets (e.g., private key or password) are considered by allowing
the adversary to have access to the Reveal oracle and the Corrupt oracle respec-
tively. To model leakage-resilience, Shin et al. [7] introduced an additional Leak
oracle that allows the adversary to learn the stored secrets of unrelated sessions.

The focus of this paper is on the Diffie–Hellman-based LR-AKEP published
in ASIACRYPT 2003 [7] (hereafter referred to as “the LR-AKE protocol”). A
distinct difference between the LR-AKE protocol and latter extensions [8,9] is
that only one secret is stored on the client in the latter schemes.

We regard our contributions in this paper to be three-fold:

1. Revised security model: We refine the original model used by Shin et al.
to prove the security of the LR-AKE protocol by splitting the Leak oracle
into LeakC and LeakS oracles2. By so doing, we are able to define how many
leakages occur on the server side.

2. Stronger notion of leakage-resilience than that defined by Shin et
al.: Shin et al. proved that the LR-AKE protocol is secure when the leaks do
not originate from both the client and servers simultaneously. We demon-
strate that the LR-AKE protocol can, in fact, provide an almost perfect
security level.

3. Notion of traceability not previously mentioned by Shin et al.:
We demonstrate that the LR-AKE protocol can provide traceability, which
allows us to identify the compromised client or server devices when leakages
occur.

2 Revisiting the Leakage-Resilient AKE Protocol of
ASIACRYPT 2003

The notation used throughout this paper is as described in Table 1.
The LR-AKE protocol, described in Fig. 1, can be considered a two-party

password-based AKE involving a client-server pair where the server is one out
of n − 1 possible servers. The client, C, remembers a chosen password, pw,
and stores n − 1 secret values, hi (i = 1, . . . , n − 1), derived from pw in C’s
device. A partial secret value, hp(i).λi for 1 ≤ i ≤ n − 1 (not a share) of pw, is
registered with each of the n−1 servers. This will enable C to establish a session
key with any of these servers in subsequent sessions. The underlined values in
Fig. 1 represent the stored secrets of the respective client and server. Note that

1 Interested reader is referred to [3] for a comparison and a discussion of existing
security models for AKEPs.

2 The definitions of oracles A1 through A4 in Section 4 of [9] implicitly split the Leak
oracle, thereby distinguishing whether the leakage occurs at the client or at the
server.
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Table 1. Summary of notations

C The client with identity IDC

Si The ith server with identity IDSi , (1 ≤ i ≤ n − 1)
G Finite cyclic group of large prime order q

g, h Generators of G
ri A random value in (Z/qZ)∗

pw The password chosen by the client
p(·) Random polynomial of degree n − 1 with coefficients also randomly

chosen in (Z/qZ)∗; defined as p(x) = Σn−1
j=0 αj · xj mod q for which

α0 = pw

hp(i).λi The secret value registered by client with server Si, where p(i) is a
share of (n, n)-threshold secret sharing and λi is a Lagrange coeffi-
cient. Note that h−p(i).λi = hi ·h−pw, which allows for both client and
server to compute the same MAC keys kmc and kms, respectively.

hi Client’s stored secret corresponding to server Si; equals hΣn
l=1,l �=ip(l).λl

Tagc, Tags,Tagsk Pre-determined distinct values, e.g., Tagc = (IDC ||IDS ||00), Tags =
(IDC ||IDS ||01) and Tagsk = (IDC ||IDS ||11)

MACk(·) A MAC generation function with k as its keying material

Client, C Server, Si(1 ≤ i ≤ n − 1)

r1
R← (Z/qZ)∗ r2

R← (Z/qZ)∗

y1 ← gr1 · hi · h−pw y1−−−−−−−−−−−−→ y2 ← gr2 · hp(i).λi

kmc ← (y2.hi · h−pw)r1 = gr1r2 y2←−−−−−−−−−−−− kms ← (y1 · hp(i)·λi)r2 = gr1r2

v1 ← MACkmc(Tagc||y1||y2)
v1−−−−−−−−−−−−→ v2 ← MACkms(Tags||y1||y2)

If v2 = MACkmc(Tags||y1||y2),
v2←−−−−−−−−−−−− If v1 = MACkms(Tagc||y1||y2),

then skc ← MACkmc(Tagsk||y1||y2). then sks ← MACkms(Tagsk||y1||y2).

Fig. 1. Original LR-AKE protocol of Shin, Kobara, and Imai [7]

we only present sufficient details to understand this paper and we refer interested
reader to [7] for further details.

Shin et al. proved the LR-AKE protocol secure against off-line dictionary
attacks even if the stored secrets are leaked from either the client or up to all
n − 1 servers, but not from both client and n − 1 servers simultaneously [7,
Theorem 1].

3 Refining the Oracle for Leakage Resilience

We now revisit the BPR2000 model used by Shin et al. to prove the security of
the LR-AKE protocol.

Protocol participants. Let ID
def= Clients ∪ Servers be a non-empty set of

protocol participants, or principals. We assume Servers consists of n−1 servers,
{S1, . . . , Sn−1} and at any time a client C ∈ Clients is interacting with a server
Si ∈ Servers to establish an LR-AKE session.



172 R.C.-W. Phan, K.-K.R. Choo, and S.-H. Heng

Protocol execution. The adversary, A, controls the communications between
the protocol participants by interacting with the set of oracles, Πi

Uu,Uv
, where

Πi
Uu,Uv

is defined to be the ith instantiation of a protocol participant, Uu, in a
specific protocol run and Uv is the principal with whom Uu wishes to establish a
secret key. A controls the communication channels via the queries to the targeted
oracles. A description of the oracle types is presented as follows. Note that we
had split the Leak oracle into LeakC and LeakS oracles as this will allow us to
distinguish whether the leakage occurs at the client or at the server.

Send(Uu, Uv, i, m) query. This query to an oracle, Πi
Uu,Uv

, computes a response
according to the protocol specification and decision on whether to accept or
reject yet, and returns them to the adversary A. If Πi

Uu,Uv
has either accepted

with some session key or terminated, this will be made known to A. Note
that if m = ∗, then this will result in the instantiation of the oracle Πi

Uu,Uv

if such an oracle has not been created previously.
Reveal(Uu, Uv, i) query. Any oracle, Πi

Uu,Uv
, upon receiving such a query and

if Πi
Uu,Uv

has accepted and holds some session key, will send this session key
back to A. The Reveal query is designed to capture this notion.

Corrupt(Uu) query. This query captures unknown key share attacks and insider
attacks. This query allows A to corrupt the principal Uu at will, and thereby
learn the complete internal state of the corrupted principal. Notice that a
Corrupt query does not result in the release of the session keys since A already
has the ability to obtain session keys through Reveal queries.

LeakC(�, j) query. This query allows A to learn � (1 ≤ � ≤ n− 1) stored secrets
hι of the client oracle and the corresponding indices ι (for ι ∈ {1, . . . , n −
1}, ι �= j) of the leaked secrets.

LeakS(t, ι) query. This query to a server oracle, Uv, returns the corresponding
stored secrets hp(j).λj of any t (1 ≤ t ≤ n−1) servers and their corresponding
indices j (for j ∈ {1, . . . , n − 1}, j �= ι) of these leaked servers.

Protocol security. Security of the LR-AKE protocol [7] is defined in two
stages.

1. Proving that the protocol is secure even when the stored secrets are leaked.
2. The standard indistinguishability-based security proof (of the established

session key) as required by the BPR2000 model [1].

A revised security proof for the LR-AKE protocol, presented in Appendix A,
demonstrates that the LR-AKE protocol described in Fig. 1 provides both key
establishment and mutual authentication.

4 Strengthened Notions of Leakage Resilience and
Traceability

Shin et al. [7,9] state that one cannot achieve security when there are leakages
from both the client and server(s) side (see Fact 2) , the situation in which they
call perfect security (see Goal 1).
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Goal 1: Perfect Security [7,9]. Any AKE protocol with ‘perfect security’ re-
mains secure against leakages from client and server(s), simultaneously.
Fact 2. Impossibility of Perfect Security [7,9]. Any AKE protocol cannot
achieve (strong) security against leakage from both a client and servers simulta-
neously. If an adversary obtains stored secrets from both a client and servers at
the same time, s/he can perfectly simulate the protocol using the leaked secrets.
Thus s/he can try the password candidates off-line in parallel.

Shin et al. then argue that the next highest achievable goal is the security of
the password against offline dictionary attacks even in the situation when there
are “leakages” from either the client or the server(s) (see Goal 2 below).
Goal 2: Strong Security [7,9]. In absence of ‘perfect security’, [7,9] claim that
the next highest goal is to achieve so-called ‘strong security’, i.e. security against
the “leakages” from a client and servers, respectively.

We can view ‘perfect security’ described in Goal 1 as security against leakages
from both the client and the server(s), while ‘strong security’ described in Goal 2
as security against leakages from either the client or the server(s). We argue that
their requirement is too strong, i.e., unnecessarily restrictive as Goal 2 is not the
next best security in the absence of Goal 1. We can still have security against
leakages from both the client and server(s) with some trade-off.

Relation Between the LR-AKE Protocol and an (n, n) Secret-Sharing
Scheme

The reader might have observed that in the LR-AKE scheme, the n shares of the
secret password pw are not separated uniformly among the n−1 servers and the
client. Therefore, leakage from a client should not be treated in the same way
as leakage from a server – leakage of a stored secret from any server contains
information about just one share whilst leakage from the client constitutes the
entire stored secret, hi. It should come as no surprise that the LR-AKE protocol
will be insecure if there are leakages from the client (i.e., n−1 shares are leaked)
and one or more servers.

We can, however, relax this strong requirement to achieve perfect security
to a certain extent. We termed this as almost perfect security, which can be
formalized by splitting the Leak queries (as described in Section 3). By having
a separate LeakC query for the client oracle and a separate LeakS query for the
server oracle, we are able to formally state:

1. whether the leakage is from the client or the server, and
2. how many stored secrets are leaked.

Making the former explicit is useful because leakages from a server contain only
information about a particular share, while leakage from a client contains infor-
mation about n − 1 shares. Making the latter explicit is also useful because by
knowing which client’s stored secret has been compromised, we will know the cor-
responding compromise at the server(s). Consequently, this allows us to show that
the original LR-AKE protocol proposed in [7] can achieve a stronger notion of
leakage resilience (in the sense of ‘almost perfect security’ as described in Goal 3).
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Goal 3. Almost Perfect Security. Any AKE protocol with ‘almost perfect
security’ remains secure even against leakages from both the client and up to
n − 2 servers, simultaneously.

Since Goal 1 trivially implies Goal 3 and Goal 3 is a stronger notion than Goal
2, we now have the following result.

Theorem 1. The LR-AKE protocol achieves Goal 3 (almost perfect security)
even when both the client and up to n−2 servers leak their corresponding stored
secrets, as long as the leaked secret(s) hι of the client and leaked secret(s) of the
server(s) Sj are such that j �= ι.

Proof Intuition. Recall that:

– a LeakC(�, j) query allows the adversary A to learn � (1 ≤ � ≤ n − 1) stored
secrets hι of the Client, and the corresponding indices ι (for ι ∈ {1, . . . , n−1})
of these leaked secrets, thus as long as the LeakS queries are issued only to
servers Sj for j �= ι, there are insufficient shares (since number of leaked
shares < n) to reveal the shared secret pw.

– a LeakS(t, ι) query allows the adversary A to learn t (1 ≤ j ≤ n − 1) stored
secrets hp(j).λj of t Servers Sj, and the corresponding indices j (for j ∈
{1, . . . , n − 1}) of these leaked servers, thus as long as the LeakC query
returns only stored secrets hι of the client such that ι �= j, there insufficient
shares to reveal the shared secret pw. ��

Although we cannot prove the protocol secure when leakages originate from both
the client and all servers, we can prove that the protocol remains secure when
the leakages originate from the client and up to n − 2 servers, even in the case
when the client leaks more than one (up to n − 2) secret(s). The conditions
necessary for achieving Goal 3 is that the total of the stored secrets leaked by
the client and the servers cannot exceed n−1, and all their indices are different.
Consequently, we can view Goal 3 as a special case of Goal 1 in the sense that
we can still maintain security when we have leakages from both the client and
the server(s) simultaneously.

Traceability. In our setting, the stored secrets can be leaked from either the
client or server(s), or both. Although it is hard to prevent such leakages, the
client would most likely to be interested to know which particular stored secret
has been leaked. This is similar to the copyright violator identification and dis-
pute resolution (arbitration) scenario (e.g., in buyer-seller protocols [6]). This
allows us to handle cases where leakages are unavoidable, but future preventive
measures can be taken by firstly identifying the compromised client or server
devices.

In the context of the LR-AKE schemes, we should be able to determine the
compromised site (i.e., which particular server) since every registered stored
secret is unique. Consequently, we are able to demonstrate that the original LR-
AKE scheme provides traceability (i.e., in the event of leakages that compromise
the security of the password, it is possible to precisely pinpoint which server(s)
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leaked). For example, when a password has been compromised, we know that it
is likely that the compromise is at the client site (except with negligible probabil-
ity). We can, therefore, trace which particular server(s) had caused the leakage
by simply checking which stored secret(s) of the client, hi, is (are) leaked.

It appears that the original LR-AKE protocol [7] is the only scheme in their
family that provides such a (traceability) feature as in the other variants (e.g.,
[8,9,10]), the Client stores only one secret instead of unique ones corresponding
to each server in the case of [7].
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A Revised Security Proof

We now provide a sketch of the revised security proof demonstrating that the
LR-AKE protocol provides both key establishment and mutual authentication.

Theorem 2. The LR-AKE protocol is a secure mutual authentication and key
establishment (MAKE) protocol if the underlying message authentication (MAC)
scheme is secure in the sense of existential unforgeability under adaptive chosen
message attack assuming the intractability of the DDH Problem.

Proof. The proof for key establishment generally follows that of Shin et al.
[9, Theorem 2]. We construct a forger F against the MAC, using an adversary
A against the protocol. F now simulates the view of A in the game simulation.
F answers all Send, Execute, Reveal, LeakC, LeakS, and Corrupt queries similar
to the proof simulation of [9, Theorem 2]. At some stage of the game simulation,
A decides to choose a session to be tested and asks the Test query, which is
answered by F in almost the same fashion as the proof simulation presented in
the proof for [9, Theorem 2]. Hence, whatever F can simulate in the proof for [9,
Theorem 2], F can do the same here. After asking the Test query, A is allowed to
further interact with the protocols by asking any Send, Execute, Reveal, LeakC,
LeakS, and Corrupt queries of choice, with the exception that A is not allowed to
trivially expose the Test session by asking any Reveal, LeakC, LeakS, or Corrupt
queries to the partner or owner associated with the Test session. Eventually, A
outputs the guess bit, b′.

It follows that whatever the MAC forger can simulate in the proof for [9,
Theorem 2], our F can do the same although the converse is not true. Recall
that the SIDs of A and B for the protocol described in Fig. 1 are defined to
be y1||y2||v1||v2. Let Repeat be the event that a value of SID repeats at some
point during the game simulation. It is easy to see that the probability of Repeat

happening occurs with probability upper bounded by q2
s

2k (where G and qs is the
upper bound on the number of the sessions in the game simulation and k is the
security parameter) by a “birthday problem” calculation. Let the advantage of
A in our game simulation be denoted by AdvA(k) and the advantage of A in
the game simulation of [9, Theorem 2] be denoted by AdvA[9](k). It then follows

easily that AdvA(k) ≤ AdvA[42](k) + q2
s

2k . ��

We now prove that the LR-AKE protocol achieves mutual authentication. We
define as EventNo−Matching the event that a fresh oracle, Πi

U , who has been en-
gaged in a conversation and has successfully finished the protocol with a session
key output but without a partner oracle [1].

Lemma 1. The LR-AKE protocol of Shin et al. [7] described in Fig. 1 achieves
mutual authentication if Pr[EventNo−Matching] is negligible.

Proof. Assume that an adversary can violate the mutual authentication with
probability ε within a time bound t. Similar to our earlier proof, we construct a
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MAC forger, F , using such an adversary, A. F now simulates the view of such
an adversary, A, in similar fashion as the earlier game simulation.

We consider the probability that F does not abort the simulation, which can
happen under any of the scenarios: (1) abort when being asked some Reveal
queries (2) abort when being asked some LeakC queries (3) abort when being
asked some LeakS queries (4) abort when being asked some Corrupt queries. Let
qN be the maximum number of sessions between any two parties in the protocol
run and qP be the maximum number of players in the protocol run.

The probability that F does not abort for scenarios (1) to (3) are (q2
P qN −

2)/(q2
P qN ) respectively, and for (4) is (qP −2)/(q2

P ). One may further remark that
the simulation is perfectly indistinguishable from a real game, except for a negli-
gible probability. The probability for an oracle to have many partners is bounded
by q2

P /qN . Therefore, if F is successful during the simulation (the probability
is at least ε), then there is a completed/accepted oracle Πi

U such that Πi
U has

no matching oracle. Since there are at most q2
P qN oracles during the simulation,

the probability for this oracle to be the oracle, Πi
U0

, is 1/(q2
P qN ). Therefore, the

advantage of F is at least ε(22k −1)(qP −2)((q2
P qN −2)/(q2

P qN ))3(1/(q7
P q3

N22k

)).
However, we know that both qN and qP are polynomial in the security param-
eter k. Hence, the probability of Pr[EventNo−Matching] is negligible if the MAC is
secure. ��
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Abstract. This paper defines perfect security against side channel at-
tacks for a cryptosystem implementation, and discusses the implication
of secure notions for a cryptosystem in provable security. Then we give
some security notions for symmetric encryption against side channel at-
tacks, UB-SCA (unbreakability in side channel attacks) and IND-CPA-
SCA (indistinguishability of chosen plaintext attacks and side channel
attacks). On the basis of these definitions, we propose and prove that
IND-CPA + UB-SCA ⇒ IND-CPA-SCA by reduction, and IND-CPA-
SCA is stronger than IND-CPA or UB-SCA.

1 Introduction

During the last ten years a new class of attacks against cryptographic devices
has become public [1,2]. These attacks exploit easily accessible information like
power consumption[3], running time[4], and can be mounted by anyone using
low–cost equipment. These side–channel attacks amplify and evaluate leaked
information with the help of statistical methods, and are often much more pow-
erful than traditional cryptanalysis. Examples show that a very small amount
of side–channel information is enough to completely break a cryptosystem [5].
While many previously–known cryptanalytic attacks can be analyzed by study-
ing algorithms, the vulnerabilities of side–channel attacks result from electrical
behavior of transistors and circuits of an implementation. Therefore, it extends
theoretically the current mathematical models of cryptography to the physical
setting which takes into consideration side–channel attacks [6].

Indistinguishability of encryptions (IND), which captures a strong notion of
privacy, formalizes that an adversary’s inability to learn information about the
plaintext given a challenge ciphertext in provable security[7]. Connecting an
ability of an adversary with chosen-plaintext attack leads to security notions
of symmetric encryption, eg. IND-CPA[8] etc. Likewise, the security of sym-
metric encryption against side channel attacks does not violate this definition
as above[9–11]. However, it’s difficult to limit the power of the adversary in
implementation. As a result, the security goals and adversary models may be
considered from other directions. The best we can hope to do is combining the
security of designing with that of implementation.
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Therefore, in this paper we propose several notions of privacy for symmetric
encryption: UB-SCA and IND-CPA-SCA. The former notion describes the secu-
rity of a symmetric encryption against side channel attacks in implementation,
while the latter notion gives us a notion for a secure symmetric encryption both
in designing and implementation. We seek an approach that can put these at-
tacks to a common foundation, since designing and implementation for a secure
cryptosystem are not independent.

The rest of this paper is organized as follows. Section 2 and 3 focus on defining
a cryptosystem implementation in perfect security against side channel attacks.
Then we present security notions for a symmetric encryption based on IND-CPA
in section 4, and further section 5 generalizes the relations by reductions. Finally
we conclude some remarks about a secure cryptosystem.

2 Syntax of a Symmetric Encryption Scheme

Secure notions for symmetric encryption schemes against traditional attack are
given in [12]. The definitions for the symmetric encryption include the syntax
and formal security measures as follows. Let SE=(P , C, K, E , D) denote a
symmetric encryption scheme. The key schedule K takes a security parameter
k ∈ N as its input and returns a key K, denoted as K ← K(k). The encryption
algorithm E could be randomized or stateful. It takes the key K and a plaintext
P as inputs to return a ciphertext C, denoted as C ← EK(P ). The decryption
algorithm D is deterministic and stateless. It takes the key K and a string C
as its input to return either the corresponding plaintext P or the symbol ⊥,
denoted as x ← DK(C) where x ∈ {0, 1}∗

⋃
{⊥}. It requires DK(EK(P )) = P

for all P ∈ {0, 1}∗.

3 Implementation of Security

3.1 Implementation of Perfect Security Against Side Channel
Attacks

Side channel information is a kind of information leaked from the physical im-
plementation of a cryptosystem.So an adversary concerns mostly how much side
channel information contributes to the recovery of key. We present perfect secu-
rity against side channel attacks for a cryptosystem implementation as follows.

Definition 1. Let (P, C, S, K, E, D) be a cryptosystem implementation with
side channel information S. Let H(·) denote entropy of the information. If

H(K|S) = H(K)

where K ∈ K and S ∈ S, then the cryptosystem implementation is perfect secure
against side channel attacks. ��
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Proposition 2. The following statement are equivalent:

(1) H(K|S) = H(K). Given the side channel information, an adversary can
not get any information of key.

(2) I(K; S) = 0. An adversary cannot get any mutual information between key
and side channel information.

(3) H(S|K) = H(S). Given a key, side channel information cannot be predicted.
��

3.2 Security Levels for a Symmetric Encryption

There are four security levers for a symmetric encryption as follows:

(1) Secure designing and secure implementation: it is the ultra aim that all cryp-
tosystems pursue. Besides the designing principle, this kind of cryptosystem
also considers implementation principle.

(2) Secure designing and insecure implementation: it is the region that most
cryptosystems ignore now. In fact, implementation principle is as important
as designing principle. It’s high time that implementation principle should
have its seat.

(3) Insecure designing and secure implementation: it is a dangerous region that
a cryptosystem may exist some hidden trouble. A cryptosystem of insecure
designing may suffer from one-off beaten once it is broken, and has no op-
portunity to be repaired and upgraded. So we had better not to use this
cryptosystem.

(4) Insecure designing and insecure implementation: it is the best lesson for us
to design and implement the new cryptosystem. It was maybe a milestone
before, and yet now, it is behind the times on the development of theory and
technology. So it provides a quick and good way to know the development
of this field.

So the security levels remind us to pay more attention to countermeasure
against threat from real world, and a secure cryptosystem in designing and
implementation.

4 Secure Notions Against Side Channel Attacks

4.1 Privacy of a Symmetric Encryption Scheme

The privacy of a symmetric encryption scheme is measured by indistinguisha-
bility of the real-or-random model of [12]. It describes an adversary cannot dis-
tinguish a message from an equal-length random string in the encryption, which
is called IND-CPA. Define the real-or-random encryption oracle EK(RR(·, b)),
where b ∈ {0, 1}, to take an input x as follows:

If b = 1
then it computes C ← EK(x) and return C;
else it computes C ← EK(r) where r ← {0, 1}|x| and returns C.
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The encryption scheme is good if no reasonable adversary can obtain signifi-
cant advantage in distinguishing the cases b = 0 and b = 1 given access to the
oracle.

Definition 3 (IND–CPA). Let SE=(P, C, K, E, D) be a symmetric encryp-
tion scheme. Let A be an adversary that has access to the oracles EK(RR(·,b)),
b ∈ {0, 1} and k ∈ N . Now, the following experiment is considered:

Experiment Expind−cpa−b
SE,Acpa

(k)
K ← K(k)
d ← A

EK(RR(·,b))
cpa (k)

Return d

The advantage of the adversaries is defined via

Advind−cpa
SE,Acpa

(k) = Pr[Expind−cpa−1
SE,Acpa

(k) = 1] − Pr[Expind−cpa−0
SE,Acpa

(k) = 1].

The advantage function of the scheme is defined as follows. For any integers
t, qe, ue,

Advind−cpa
SE (k, t, qe, ue) = max

Acpa

{Advind−cpa
SE,Acpa

(k)}.

Where the maximum is over Acpa with time complexity t, making at most qe

queries to the EK(RR(·, b)) oracle, totaling ue bits at most. The scheme is said to
be IND-CPA secure if the function Advind−cpa

SE,A (·) is negligible for any adversary
Acpa whose time complexity is polynomial in k. ��

4.2 Implementation Privacy of a Symmetric Encryption Scheme

Now we specify security definitions for one implementation of a symmetric en-
cryption scheme SE=(P , C, S, K, E , D). It is convenient to define an algo-
rithm K ′ ← S∗

K(·), whose input is side channel information S and output is key
K ′ ∈ {0, 1}∗

⋃
{⊥}.

The scheme is good in implementation if no reasonable adversary can obtain
significant advantage to break the total key given access to the oracles. Here,
UB means unbreakability of the key.

Definition 4 (UB-SCA). Let SE=(P, C, S, K, E, D) be the implementation
of symmetric encryption scheme with side channel information algorithm S. Let
b ∈ {0, 1} and k ∈ N . Let Asca to be an adversary that has access to the oracle
S∗

K(·). Now, the following experiment is considered:

Experiment Expub−sca
SE,Asca

(k)
K ← K(k)
K ′ ← A

EK(·),S∗
K(·)

sca (k)
If K = K ′ then return 1

else return 0
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The advantage of the adversaries is defined via

Advind−sca
SE,Asca

(k) = Pr[Expind−sca
SE,Asca

(k) = 1].

The advantage function of the scheme is defined as follows. For any integers
k, t, qe, ue, qs, us

Advind−sca
SE (k, t, qs, us, qs, us) = max

Asca

{Advind−sca
SE,Asca

(k)},

where the maximum is over all Asca with time complexity t. It makes at most
qe encryption queries to the EK(·) oracle (totaling at most ue bits), and at most
qs implementation queries to the S∗

K(·) (totalling us bits at most). The scheme
is UB–SCA secure if the function Advind−sca

SE,A (·) is negligible for any adversary
Asca whose time complexity is polynomial in k. ��

4.3 Privacy of a Symmetric Encryption Scheme in Both Designing
and Implementation

We specify IND–CPA–SCA that an adversary cannot distinguish a message from
an equal–length string of garbage against side channel attacks in the implemen-
tation of encryption. Formally, we define an SCA oracle S∗ and a real-or-random
oracle EK(RR(·,b)), where b ∈ {0, 1}, to take an input x as follows:

If b = 1
then it computes C ← ES∗(·)(x) and return C;
else it computes C ← ES∗(·)(r) where r ← {0, 1}|x| and returns C.

The scheme is “good” in designing and implementation if no “reasonable” ad-
versary can obtain “significant” advantage in distinguishing the cases b = 0 and
b = 1 given access to the oracles.

Definition 5 (IND–CPA–SCA). Let SE=(P, C, S, K, E, D) be a symmet-
ric encryption scheme with side channel information. Let b ∈ {0, 1} and k ∈ N .
Let Acpa−sca to be an adversary that has access to the oracles EK(RR(·,b)) and
S∗

K(·). Now, the following experiment is considered:

Experiment Expind−cpa−sca−b
SE,Acpa−sca

(k)
K ← K(k)
d ← A

EK(RR(·,b)),S∗
K(·)

cpa−sca (k)
Return d

The advantage of the adversaries is defined via

Advind−cpa−sca
SE,Acpa−sca

(k)=Pr[Expind−cpa−sca−1
SE,Acpa−sca

(k)=1] − Pr[Expind−cpa−sca−0
SE,Acpa−sca

(k)=1].

The advantage function of the scheme is defined as follows. For any integers
t, qe, ue, qs, us,

Advind−cpa−sca
SE (k, t, qe, ue, qs, us) = max

Acpa−sca

{Advind−cpa−sca
SE,Acpa−sca

(k)}.
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Where the maximum is over all Acpa−sca with time complexity t. It makes at
most qe queries to the EK(RR(·, b)) oracle (totaling at most ue bits), and at most
qs queries to the S∗

K(·) (totalling at most us). The scheme is said to be IND–
CPA–SCA secure if the function Advind−sca

SE,A (·) is negligible for any adversary
Acpa−sca whose time complexity is polynomial in k. ��

4.4 Notation for Adversary Execution

In reduction we often make an adversary A′ executing another adversary A. The
adversary A′ maintains the execution state of A. Whenever A makes an oracle
query, A′ stops A, returns a reply to this oracle query, and then continues run-
ning A. We give some program for A′ as follows:

For i = 1, . . . , qe do
When A makes oracle query xi

[Some code computing a value yi]
A ⇐ yi

EndWhile
A ⇒ b

The notation A ⇐ yi means that A is designed a value yi in response to its oracle
query xi. It is assumed here that A makes a total of qe queries. The notation
A ⇒ b means that A is returning a value b.

5 Reduction Among the Notions

Theorem 6 (UB–SCA ∧ IND–CPA −→ IND–CPA–SCA). For any
scheme SE=(P, C, S, K, E, D), if SE is IND–CPA secure and UB–SCA secure,
then it is IND–CPA–SCA secure. Concretely,

Advind-cpa-sca
SE (k, t, qe, ue, qs, us) ≤ 2 · Advub-sca

SE (k, t, qe, ue, qs, us)

+ Advind-cpa
SE (k, t, qe, ue) (1)

Proof Let SE=(P , C, S, K, E , D) be a symmetric encryption scheme imple-
mentation. To any adversary A attacking the scheme in the IND-CPA-SCA
notion, we associate two adversaries, Asca which attacks SE in the UB-SCA
sense, and Acpa which attacks SE in the IND-CPA sense, so that inequation
(1) is concluded. Furthermore, if A runs in time t using qe encryption and qs

implementation queries (totalling μe,μs bits respectively), then Asca runs in
time t using qe encryption and qs implementation queries (totalling μe and μs

bits respectively), and Acpa runs in time t using qe encryption queries (totalling
μe bits).

The two adversaries Asca and Acpa uses A to achieve their goals. Specifically,
Asca, whose goal is to get a key from the oracle S∗

K(·), will simply use A’s query
to the oracle S∗

K(·) as its own. Thus if A gets a key, so does Asca. Similarly,
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Acpa, whose goal is to figure out whether the encryption of the message or that
of the random string of equal length, directly depends on A to do so.

The constructions for Acpa and Asca are as follows.

Adversary A
EK(·),S∗

K(·)
sca (k)

b′ ← {0, 1}
For i = 1, . . . , qe + qs do

When A makes a query Mi,0, Mi,1 to its
ind encryption oracle do

A ⇐ EK(Mi,b′)
When A makes a query Si to its
implementation oracle do

K ′ ← S∗
K(Si)

If K! = K ′

then A ⇐ ⊥;
else stop.

Adversary A
EK(RR(·,b))
cpa (k)

For i = 1, . . . , qe + qs do
When A makes a query Mi,0, Mi,1 to its
ind encryption oracle do

A ⇐ EK(RR(Mi,b, b))
When A makes a query Si to its oracle do

A ⇐ ⊥
A ⇒ b′

Return b′.

Now we prove inequation (1). Let Pr[·] denote the probability in
Expind-cpa-sca-b

SE,Acpa-sca
(k) where b ∈ {0, 1} and let b′ denote the bit output by A in this

experiment. Let F denote the event that A makes at least one query, i.e. a query
S such that S∗

K(S) = K. Let Prp[·] denote the probability in Expind-cpa-b
SE,Acpa

(k)
and let Prs[·] denote the probability in Expub-sca

SE,Asca
(k).

We claim

Pr[b′ = b ∧ F ] ≤ Pr[F ]
= Prs[Ascasucceeds]
= Advub−sca

SE ,Asca
(k) (2)

and

Pr[b′ = b ∧ ¬F ] ≤ Prp[b′ = b]

=
1
2
Advind−cpa

SE ,Acpa
(k) +

1
2
. (3)
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We finish the proof given this and then return to the justification. That is,

1
2
Advind−cpa−sca

SE (k) +
1
2

= Pr[b′ = b]

= Pr[b′ = b ∧ F ] + Pr[b′ = b ∧ ¬F ]

≤ Advub−sca
SE,Acpa

(k) +
1
2
Advind−cpa

SE (k) +
1
2
.

Some algebraic manipulation leads to inequation (1). We justify the claimed
inequations (2) and (3) by analyzing each of them in turn.

To justify the inequations (2), we observe that Asca simulates A in the exact
same environment as that of the experiment Expind−cpa−sca−b

SE,Acpa−sca
(k). Therefore, if

A submits a valid S as a oracle query (i.e. the event F occurs), Asca uses this S
as a query to its oracle, and so inequation (2) follows. (Once this output equals
K, Asca stops and the simulation does not accurate more.) Similarly, for the
inequation (3), when then event F does not occur, Acpa simulates A in the exact
same environment as that of the experiment Expind-cpa-sca-b

SE,Acpa−sca
(k). Therefore, if A

is able to guess the correct bit b′ = b, so is Acpa, and inequation (3) follows. This
concludes the proof for inequation (1).

To justify the claimed resource complexities of Asca and Acpa, each of Asca

and Acpa uses the same number of queries as that of A. For time complexity,
we measure the time for each entire experiment. There, inequation (1) leads to
Theorem 6. ��

Theorem 7 (IND-CPA-SCA −→ IND-CPA). For any scheme SE=(P, C,
S, K, E, D), if SE is IND-CPA-SCA secure, then it is IND-CPA secure.
Concretely,

Advind-cpa
SE (k, t, qe, ue) ≤ Advind-cpa-sca

SE (k, t, qe, ue, qs, us). (4)

Proof The adversary A depends on Acpa to achieve its goal. Specifically, A’s goal
is to figure out whether the message or the random string has been encrypted
in an implementation.

The constructions for A are as follows.

Adversary AEK(RR(·,b)),SK(·)(k)
For i = 1, . . . , qe do

When Acpa makes a query Mi,0, Mi,1 to its
ind encryption oracle do

Acpa ⇐ EK(RR(Mi,b, b))
Acpa ⇒ b′

Return b′.

For Acpa−sca’s advantage, we have

Advind−cpa−sca
SE,Acpa−sca

(k) ≥ Pr[Expind−cpa−1
SE,Acpa

(k) = 1] − Pr[Expind−cpa−0
SE,Acpa

(k) = 1]

= Advind−cpa
SE,Acpa

(k).
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Since Acpa is an arbitrary adversary, the claimed relation of the advantage follows.
��

Theorem 8 (IND-CPA-SCA −→ UB-SCA). For any scheme SE=(P, C, S,
K, E, D), if SE is IND-CPA-SCA secure, then it is UB-SCA secure. Concretely,

Advub-sca
SE (k, t, qe, ue) ≤ Advind-cpa-sca

SE (k, t, qe, ue, qs, us) (5)

Proof The adversary A depends on Asca to achieve its goal. Specifically, A whose
goal is to figure out whether the message or the random string has been encrypted
in an implantation.

The constructions for A are as follows.

Adversary AEK(RR(·,b)),SK(·)(k)
For i = 1, . . . , qe + qs do

When Asca makes a query Mi,0, Mi,1 to its
ind encryption oracle do

A ⇐ EK(RR(Mi,b, b)
When Asca makes a query Si to its
implementation oracle do

K ′ ← S∗
K(Si)

If K! = K ′

then Asca ⇐ ⊥;
else stop.

Asca ⇒ b′

Return b′.

For Acpa−sca’s advantage, we have

Advind−cpa−sca
SE,Acpa−sca

(k) ≥ Pr[Expind−sca
SE,Asca

(k) = 1] = Advub−sca
SE ,Asca

(k).

Since Asca is an arbitrary adversary, the claimed relation of the advantage
follows. ��
From the reduction as above, we conclude that ”IND–CPA + UB–SCA ⇒ IND–
CPA–SCA”, and IND–CPA–SCA notion is stronger than IND–CPA or UB–SCA.
Our results has not only theoretical interest but also can be useful when one prove
the IND–CPA–SCA securities of symmetric encryption scheme implementation.

6 Conclusion

This paper discusses the relationship of secure notions between traditional crypt-
analysis and side channel attacks. Implementation of security for a symmetric
encryption is introduced, including implementation of perfect security and secu-
rity levels. Then we propose the security notions UB–SCA and IND–CPA–SCA
for symmetric encryption based on IND–CPA, and further generalize the rela-
tions by reductions. These notions provide an approach for symmetric encryption
against side channel attacks.
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Abstract. Security of commonly used block ciphers is typically mea-
sured in terms of their resistance to known attacks. While the provable
security approach to block ciphers dates back to the first CRYPTO con-
ference (1981), analysis of modern block cipher proposals basically do
not benefit fully from this, except for a few cases. This paper consid-
ers the security of recently proposed PRP-RKA secure block ciphers and
discusses how they relate to existing types of attacks on block ciphers.

Keywords: Provable security, pseudorandom permutation (PRP), key
recovery (KR), block cipher, related key attacks (RKA).

1 Introduction

The right approach to analyzing the security of public-key encryption schemes
and protocols is by reduction, in a given security model, to an underlying hard
problem: the so-called the provable security approach. In the symmetric-key
setting, while formal definitions of security do exist (e.g., Luby and Rackoff),
security of a modern block cipher is often measured by its resistance to known
attacks. Thus, from the perspective of the provable security community, the
security of modern block ciphers may seem heuristic.

This paper considers the formal provable security approach to analyzing block
ciphers. The advantage is clear. Security of a block cipher can be proved in a
generic sense, by specifying bounds on the adversary’s resources, without as-
suming the exact approach taken by the adversary. It encompasses all possible
attacks mountable by the adversary given those resources. This compares favor-
ably with the heuristic case where a primitive is designed to resist some list of
attacks but may later fall to attacks not considered by the designer. Historically,
building on work by Luby and Rackoff, the provable security of block ciphers

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 188–197, 2007.
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have been analyzed with respect to the notion of pseudorandomness (PRP). This
is advantageous since PRP implies security against key recovery (KR).

Except for a few cases (e.g., [8,1,11,12,9]), we are however not aware of any
work that analyzes the security of modern block ciphers in the context of PRP.
We also note that the assumption that the underlying block cipher is a PRP was
used in the security analysis of CBC-MAC [2]. To the best of our knowledge,
the earliest result on provable security analysis of block ciphers is by Hellman et
al. [5]. In particular, the security was formalized in the ideal cipher model (a.k.a.
Shannon model or black-box model) and in terms of an adversary winning a key-
recovery game. The formalization of the security of block ciphers against related-
key attacks in fact dates back to the work of Winternitz and Hellman [15], also
considered in the context of a key-recovery game in the ideal cipher model, but
here in the presence of related-key oracles. The first known block cipher with a
provable security proof of pseudorandomness (PRP) is DESX [8].

Since the bulk of block cipher analysis is dedicated to key-recovery attacks, it is
sensible to formally cast these PRP-RKA ciphers also in the context of resistance
to key-recovery attacks either in the presence of related-key oracles (KR-RKA)
or not (KR). Interestingly, doing so brings us back to where it started, since the
first results [5,15] on provable security of block ciphers were in the context of
KR and KR-RKA.

The rest of this paper is organized as follows. In the next section, we introduce
some notation and review different security notions for block ciphers. Section 3 is
the core of our paper. We describe several key recovery attacks on some PRP-RKA
secure ciphers and relate the corresponding success probability with the security
bound derived from a generic attacker. Finally, we conclude in Section 4.

2 Definitions

Consider a family of functions F : K × D → R, where K = {0, 1}k is the set of
keys of F , D = {0, 1}l is the domain of F and R = {0, 1}L is the range of F , and
where k, l and L are the key, input and output lengths in bits. We use FK(D)

as a shorthand for F (K, D). By K
$← K, we denote the operation of selecting a

string K at random from K. Similar notations apply for a family of permutations
E : K × D → D, where K = {0, 1}k is the set of keys of E and D = {0, 1}l is the
domain and range of E.

2.1 Related Keys

The related-key-deriving (RKD) function φ ∈ Φ is a map φ : K → K, where Φ
is a subset of functions mapping K to K. Given F and K ∈ K, the related-key
oracle FRK(K,·)(·) takes two arguments: a function φ : K → K and an element
P ∈ D, and returns Fφ(K)(P ), where RK(K, φ) = φ(K). An attack exploiting
access to the oracle FRK(K,φ)(·) where φ ∈ Φ is called a Φ-restricted related-key
attack (RKA). Similar definitions apply for E.
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2.2 Security Notions

Suppose that E : K×D → D is a family of permutations on D. A PRP adversary A
gets access to an oracle, which, on input P ∈ D, either returns EK(P ) for a random
key K ∈ K or returns G(P ) for a random permutation G on D. The goal of A is to
guess the type of oracle it has —by convention, A returns 1 if it thinks that the
oracle is computing EK(·). The adversary’s advantage is defined by:

AdvPRP
E (A) = Pr

[
K

$← K : AEK(·) = 1
]
− Pr

[
G

$← Perm(D) : AG(·) = 1
]

.

E is said PRP-secure if AdvPRP
E (A) is sufficiently small.

Extension of this to include RKAs allows the PRP-RKA adversary A to make
related-key oracle queries of the form (φ, P ) for a related-key deriving function
φ : K → K, φ ∈ Φ, and P ∈ D. We so have:

AdvPRP−RKA
Φ,E (A) = Pr

[
K

$← K : AERK(·,K)(·) = 1
]

− Pr
[
K

$← K; G $← Perm(K, D) : AGRK(·,K)(·) = 1
]

.

When the inverse of E is available, security under chosen-ciphertext (related-key)
attacks (namely, PRP-CCA or PRP-CCRKA) can be similarly defined:

AdvPRP−CCA
E (A) = Pr

[
K

$← K : AEK(·),E−1
K (·) = 1

]
− Pr

[
G

$← Perm(D) : AG(·),G−1(·) = 1
]

and

AdvPRP−CCRKA
Φ,E (A) = Pr

[
K

$← K : AERK(·,K)(·),E−1
RK(·,K)(·) = 1

]
− Pr

[
K

$← K; G $← Perm(K, D) : AGRK(·,K)(·),G−1
RK(·,K)(·) = 1

]
.

For security against key recovery, a KR adversary A is given a list L of p pairs
of plaintext/ciphertext

L =
{
〈P1, C1〉, . . . , 〈Pp, Cp〉

}
where Ci = EK(Pi) for 1 ≤ i ≤ p. The goal of A is to find a key K̂ that is
consistent with L, that is, a key such that, for all 〈Pi, Ci〉 ∈ L, EK̂(Pi) = Ci.
We let ConsE(L) denote the set of all keys consistent with L. The advantage of
KR adversary A is then given by:

AdvKR
E (A) = Pr

[
K

$← K; L ←
{
〈Pi, EK(Pi)〉

}
: AL = K̂ ∈ ConsE(L)

]
.

E is KR-secure if AdvKR
E (A) is sufficiently small. Again, this can be extended to

include RKAs:

AdvKR−RKA
Φ,E (A) = Pr

[
K

$← K; L ←
{
〈Pi, EK(Pi)〉

}
:

AL,ERK(·,K)(·) = K̂ ∈ ConsE(L)
]

.



On the Notions of PRP-RKA, KR and KR-RKA for Block Ciphers 191

3 Security of Existing PRP-RKA Block Ciphers

In [5], it was shown that the advantage AdvKR
E (A) of any KR adversary A

mounting a generic attack depends on the number t of verifications made to the
block cipher E (i.e., evaluations of the form EKi(Pi) for any text Pi and any key
Ki of the adversary’s choice), and on the key bit-length k. More specifically, it
was shown that:

AdvKR
E (A) ≤ t

2k
+

1
2k − t

.

This bounds the advantage of a generic adversary. We see that both terms on
the right side of the inequality remain small as long as t � 2k. As t relates to
an exhaustive key search, this means that a generic adversary must exhaust a
significant fraction of key candidates to have a reasonable chance to recover the
actual key. This also means that having an advantage significantly better than
by exhaustive search requires to exploit the specific structure of the block cipher
under attack.

Similarly, in [15], it was shown that the advantage AdvKR−RKA
Φ,E (A) of any

KR-RKA adversary A mounting a generic related-key attack is bounded by:

AdvKR−RKA
Φ,E (A) ≤ mt

2k
+

1
2k

,

where m is the number of related-key oracle queries to block cipher E. Analo-
gously, we see that the advantage of a generic adversary remains small as long
as mt � 2k.

In the sequel, we analyze and discuss the security of the constructions depicted
on Fig. 1.
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3.1 First Construction

In [1], Bellare and Kohno analyzed a PRP-RKA secure block-cipher based con-
struct that is essentially a generalization of the 2-key variant of DES-EXE [13]
structure (see Fig. 1-a). In particular, they proved:

Theorem 1 (Bellare-Kohno). Let E : {0, 1}k × {0, 1}l → {0, 1}l be a block
cipher. Let E′ : {0, 1}k+l × {0, 1}l → {0, 1}l be the block cipher defined as

E′
K1‖K2

(P ) = EK1

(
EK1(P ) ⊕ K2

)
where K1 is k bits long and K2 is l bits long. Let Φ be any set of RKD functions
over {0, 1}k+l that modify only K2 and that are independent of K1. Then, for any
adversary A against E′ that queries its related-key oracle with at most r different
RKD transformations and at most q times per transformation, we can construct
an adversary BA against E such that

AdvPRP−RKA
Φ,E′ (A) ≤ AdvPRP

E (BA) +
16r2q2 + rq′(q′ − 1)

2l+1

and BA makes 2rq oracle queries and runs in the same time as A and q′ is q
times the maximum over all K, K ′ ∈ {0, 1}k+l, of the number of φ ∈ Φ mapping
K to K ′. 
�

The result above shows the existence of block ciphers secure against certain
classes of Φ-restricted related-key attacks. PRP-RKA security of the resulting
cipher comes with a restriction that the set of RKD functions Φ defining an
RKA adversary only modifies the second part of the key (i.e., K2). This is a
weaker notion of RKA security compared to previous works [6,7,14] where no
such restriction is made.

With DES-EXE like structures, one may wonder if existing attacks [13,4] on
DES-EXE apply to this variant. We answer this in the affirmative. First, we
describe a meet-in-the-middle (MITM) attack that does not require related-key
queries. Next, we present a differential RKA with similar effort.

MITM Attack.

1. Let 〈P, C〉 and 〈P ′, C′〉 be any two pairs of plaintext/ciphertext in L with
C = E′

K1‖K2
(P ) and C′ = E′

K1‖K2
(P ′).

2. For each key guess, K̂1 ∈ {0, 1}k, do the following.
(a) Evaluate

S1 = EK̂1
(P ) ⊕ EK̂1

(P ′) and S2 = E−1
K̂1

(C) ⊕ E−1
K̂1

(C′)

and check whether S1 = S2.
(b) If so, let K̂2 = E−1

K̂1
(C) ⊕ EK̂1

(P ) and validate the guessed key K̂1‖K̂2

on all pairs of L.
3. If the guessed key is validated, return (the consistent key) K̂1‖K̂2.
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If the above MITM adversary tries all possible keys K̂1 ∈ {0, 1}k at Step 2,
it will win the key recovery game with probability 1. As a result, the success
probability of this adversary is ρ, the proportion of guessed keys.

Recalling the results in [5], when considering a generic adversary, any block
cipher E′ of key length k + l bits is expected to provide the following security
bound:

AdvKR
E′ (A) ≤ t

2k+l
+

1
2k+l − t

,

where t denotes the number of verifications. A closer look at the proof offered
in [5] shows that if the generic adversary makes verifications with distinct key
candidates then the bound can be sharpened as:

AdvKR
E′ (A) ≤ t

2k+l
+

1 − t
2k+l

2k+l − t
=

t

2k+l
+

1
2k+l

.

If we let t denote the number of times Step 2 in the MITM attack is performed
(i.e., the number of times distinct key candidates are being manipulated), then
the success probability is given by:

AdvKR
E′ (MITM) = ρ =

t

2k
.

Interestingly, we observe that

AdvKR
E′ (MITM) =

t

2k
>

t

2k+l
+

1
2k+l

,

and so the block-cipher based construct of Fig. 1-a does not give the best possible
security against key recovery.

Differential RKA Attack (DRKA)

1. Let 〈P, C〉 be any pairs of plaintext/ciphertext in L with C = E′
K1‖K2

(P ).
2. Query the related-key oracle with (P ′, Δ) and obtain the pair (P ′, C′) with

C′ = E′
K1‖K2⊕Δ(P ).

3. For each key guess, K̂1 ∈ {0, 1}k, do the following.
(a) Check whether

E−1
K̂1

(C) ⊕ E−1
K̂1

(C′) = Δ .

(b) If so, let K̂2 = E−1
K̂1

(C) ⊕ EK̂1
(P ) and validate the guessed key K̂1‖K̂2

on all pairs of L.
4. If the guessed key is validated, return (the consistent key) K̂1‖K̂2.

According to [15], we know that any block cipher E′ of key length k + l bits
is expected to provide the following security against generic related-key attacks:

AdvKR−RKA
Φ,E′ (A) ≤ mt

2k+l
+

1
2k+l

,
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where m denotes the number of calls to the related-key oracle and t the number
of verifications. Interestingly, in a way similar to the analysis of the previous
attack, we get that, for m = 1, the success probability of our differential related-
key attack (DRKA) satisfies

AdvKR−RKA
E′ (DRKA) =

t

2k
>

t

2k+l
+

1
2k+l

.

Again, we conclude that the block-cipher based construct of Fig. 1-a does not
offer the best possible security against key recovery, in this case, in the presence
of related-key oracles.

3.2 Second Construction

Lucks [11] argued that Theorem 1 only applies for large l. For practical values
of l, one may have that AdvPRP−RKA

Φ,E′ (A) − AdvPRP
E (BA) is not small. He there-

fore considered a construction that yields more meaningful security bound. See
Fig. 1-b.

Theorem 2 (Lucks). Let E : {0, 1}l × {0, 1}l → {0, 1}l be a block cipher. Let
E′ : {0, 1}2l × {0, 1}l → {0, 1}l be the block cipher defined as

E′′
K1‖K2

(P ) = EEK1 (K2)(P )

where K1 and K2 are l bits long. Let Φ be any set of RKD functions over
{0, 1}k+l that modify only K2 and that are independent of K1. Then, for any
adversary A against E′ that queries its related-key oracle with at most r different
RKD transformations, we can construct an adversary BA against E such that

AdvPRP−RKA
Φ,E′′ (A)
r + 1

≤ AdvPRP
E (BA) .

and BA makes no more oracle queries than A and runs in the same running
time as A. 
�

The encryption of key K2 under key K1 is used as the final secret key to encrypt
the plaintext P , i.e., C = EEK1 (K2)(P ). Further, note that although a 2l-bit
key K1‖K2 is used, essentially the adversary just needs to recover the final l-bit
secret key K̃ := EK1(K2) that is used to key the encryption of P , which leads
to a total break. For an attacker performing an exhaustive search (XS) on K̃,
we have

AdvKR
E′′(XS) =

t

2l
,

where t denotes the number of guessed keys. This has to be compared with the
security bound given by a generic KR adversary against a 2l-bit key cipher E′′:

AdvKR
E′′(A) ≤ t

22l
+

1
22l − t

.

We see that the above XS attacker has a substantially larger success probability.
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3.3 Third Construction

Kim et al. [9] analyzed another block-cipher based construct. See Fig. 1-c. It is
more efficient than the two previous ones as it only requires a single call to the
underlying E.

Theorem 3 (Kim et al.). Let E : {0, 1}k × {0, 1}l → {0, 1}l be a block cipher
and let H : {0, 1}t → {0, 1}l be an ε-almost 2-xor universal (ε-AXU2) family
with ε ≥ 1

2l . Let E′′′ : {0, 1}k+t × H × {0, 1}l → {0, 1}l be the block cipher
defined as

E′′′
K‖T,h(P ) = EK(P ⊕ h(T )) ⊕ h(T )

where K is k bits long and T is t bits long. Let Φ be any set of RKD functions
over {0, 1}k+t that modify only T and that are independent of K. Then, for any
adversary A against E′′′ that queries its oracles with at most q queries, we can
construct a chosen-ciphertext adversary BA against E such that

AdvPRP−CCRKA
Φ,E′′′ (A) ≤ AdvPRP−CCA

E (BA) + 3ε q2

and BA makes the same number of oracle queries and runs in the same running
time as A. 
�
Recall that DESX [8] is defined as:

DESX(P, K1‖K‖K2) = K2 ⊕ EK(P ⊕ K1)

where K1 and K2 are the pre- and post-whitening keys, respectively, and K is the
key to the inner E encapsulated by the two outer whitening (XOR) operations.
The basic structure of the above construction is like DESX [8] except that the
pre- and post-whitening keys equal each other and is the result of applying an
ε-AXU2 hash function h to the input tweak T :

K1 = K2 = h(T ) .

In other words, this construction can be viewed as 2-key DESX where the secret
key is equivalently K and h(T ), thus the total key length is |K| + |h(T )|.

There is a restriction attached to this construction as well. Namely, the key
K to EK(·) cannot be varied by an RKA adversary; only T is allowed to vary.

An advanced slide attack [3] was applied to DESX. It is basically a MITM
attack. We show that a variant also applies here.

MITM Attack. We first make some observations. Consider a pair of plaintexts
P and P ′ such that the corresponding ciphertexts, C and C′, satisfying the
relation C ⊕ C′ = h(T ). Such a pair is called a slid pair. For such a slid pair
〈P, C〉 and 〈P ′, C′〉, we have

C = C′ ⊕ h(T ) = EK

(
P ′ ⊕ h(T )

)
and C′ = C ⊕ h(T ) = EK

(
P ⊕ h(T )

)
which yields

h(T ) ⊕ P ⊕ P ′ = E−1
K (C) ⊕ P = E−1

K (C′) ⊕ P ′ .

Based on this, we can mount the following attack.
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1. Let L = 〈Pi, Ci〉1≤i≤p be a list of p known pairs of plaintext/ciphertext with,
Ci = E′′′

K‖T,h(Pi).

2. For each key guess, K̂ ∈ {0, 1}k, do the following.
(a) For each 1 ≤ i ≤ p, evaluate E−1

K̂
(Ci) ⊕ Pi and insert

〈E−1
K̂

(Ci) ⊕ Pi, i〉

into a hash table keyed by the first component, and check whether there
is a coincidence (collision) in the table.

(b) If so, assuming that the collision occurs for indexes i and j, namely,
E−1

K̂
(Ci) ⊕ Pi = E−1

K̂
(Cj) ⊕ Pj , let h(T̂ ) = Ci ⊕ Cj and validate the

guessed key K̂‖T̂ on all pairs of L.
3. If the guessed key is validated, return (the consistent key) K̂‖T̂ .

The probability to have at least one coincidence (i.e., to find at least one slid
pair 〈Pi, Ci〉 and 〈Pj , Cj〉 in L) is about

1 − exp(−p2/2l+1) with p = |L| .

As a result, if t/2k denotes the proportion of keys guessed at Step 2, the success
probability of our MITM attacker is

AdvKR
E′′′ (MITM) ≈ t

2k

(
1 − exp(−p2/2l+1)

)
.

Resistance against RKA. On the positive side, it appears that the construc-
tion of Fig. 1-c seems to resist differential RKAs since the key K to the inner
EK is not allowed to vary and although T is allowed to vary, the actual key
difference due to h(T ) cannot be predicted.

4 Concluding Remarks

We have discussed key recovery attacks on some recent proposals to construct a
block cipher secure in the sense of PRP-RKA from a block cipher (not necessarily
secure against related-key attacks). Our results emphasize that known construc-
tions specifically designed for provable security against related-key attacks do
not have optimal key-recovery resilience.

Furthermore, all PRP-RKA secure constructions proposed so far do not allow
the key component of the underlying cipher E to be varied. An open prob-
lem is to prove (or disprove) the existence of PRP-RKA secure constructions
allowing this.
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Abstract. We propose a secure threshold signature scheme without
trusted dealer. Our construction is based on the recently proposed signa-
ture scheme of Waters in EUROCRYPT’05. The new threshold signature
scheme is more efficient than the previous threshold signature schemes
without random oracles. Meanwhile, the signature share generation and
verification algorithms are non-interactive. Furthermore, it is the first
threshold signature scheme based on the computational Diffie-Hellman
(CDH) problem without random oracles.

Keywords: Threshold Signature, Bilinear groups, CDH problem.

1 Introduction

Digital signatures can be produced by a group of players rather then by one
party by using a threshold signature scheme. In contrast to the regular signature
schemes where the signer is a single entity which holds the secret key, in (k, n)-
threshold signature schemes the secret key is shared by a group of k players.
In order to produce a valid signature on a given message m, individual players
produce their partial signatures on that message, and then combine them into a
full signature on m. A distributed signature scheme achieves threshold k, if no
coalition of k − 1 (or less) players can produce a new valid signature, even after
the system has produced many signatures on different messages. A signature
resulting from a threshold signature scheme is the same as if it was produced by
a single signer possessing the full secret signature key. In particular, the validity
of this signature can be verified by anyone who has the corresponding unique
public verification key. In other words, the fact that the signature was produced
in a distributed fashion is transparent to the recipient of the signature.

Threshold cryptography and secret sharing have been given considerable at-
tention since they were proposed. The first threshold secret sharing schemes,
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based on the Lagrange interpolating polynomial and linear project geometry,
were proposed by Shamir [11]. Many efficient digital signature and threshold
signature schemes are proved secure in the random oracle model. However, sev-
eral papers proved that some popular cryptosystems previously proved secure
in the random oracle are actually provably insecure when the random oracle is
instantiated by any real-world hashing functions [2]. Therefore, provably secure
threshold signature scheme in the standard model attracts a great interest.

Related Work. Recently, [13] gave the first threshold signature without ran-
dom oracles. However, the threshold signature scheme requires that the users
generate the signature interactively. Meanwhile, the correctness of these gener-
ated signature shares cannot be verified. Ideally, there is no other interaction
in the threshold signature scheme, namely the players need not talk to each
other during signing. Such threshold systems are called non-interactive. Often
one requires that threshold signature be robust [8], namely if threshold signature
fails, the combiner can identify the signing players that supplied invalid partial
signatures. In [12], a practical threshold signature scheme based on RSA was
proposed, which is non-interactive. However, it required a trusted dealer.

Contributions. In this paper, we propose a new practical threshold signa-
ture scheme without trusted dealer. The threshold signature has the following
properties:

1. It is provably secure without relying on the random oracle model;
2. Signature share generation and verification are completely non-interactive;
3. The scheme is the first threshold signature scheme based on the CDH prob-

lem without random oracles;
4. Signature share generation and verification algorithms are very efficient.

2 Preliminaries

2.1 Security Definitions and Notions

We shows the definition as follows:

Definition 1. A (k, n)-threshold signature scheme consists of algorithms (DKG,
SS, SV, SC, Vrfy). These algorithms are specified as follows:

1. DKG is the distributed key generation algorithm. On input security param-
eter 1λ, k, n it outputs public key pk and secret key sk. Meanwhile, it also
outputs the private value ski and verification key vki of player i such that
the values (sk1, · · · , skn) form a (k, n)-threshold secret sharing of sk. The
public output of the protocol contains the public key pk and verification key
V K = (vk1, · · · , vkn).

2. SS is the signature share generation algorithm run by player i, on input secret
share ski, a message m, it returns σi as the shared signature.

3. SV is the signature share verification, on input public key pk, verification
key vki, a message m, σi, output 1 if it is valid. Otherwise, output 0.
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4. SC is the signature share combining algorithm, on input |Φ| different shares
{σi}i∈Φ, where Φ ⊂ {1, 2, · · · , n} is a set and |Φ| ≥ k, a message m, it returns
σ as the signature.

5. Vrfy is the signature verification algorithm, on input pk, m, σ, returns 1 if
it is valid, otherwise, returns 0.

DKG makes use of an appropriate distributed secret-sharing technique to gen-
erate shares of the private key as well as verification keys that will be used for
checking the validity of signature shares. The signing server then keeps their
private key shares secret but publishes the verification keys. Given a message for
signing, the signing servers then run the signature share generation algorithm
SS taking the message as input and send the resulting signature shares to the
combiner. Note that the validity of the shares can be checked by running the
signature share verification algorithm SV. When the user collects valid signature
shares from at least k servers, the signature can be reconstructed by running the
share combining algorithm SC. Notice that our model explicitly requires that
the generation and verification of signature shares is completely non-interactive.

We work with a static corruption model: the adversary must choose which
players to corrupt at the very beginning of the attack.

Unforgeability for (k, n)-threshold signature is defined as in the following game
involving an adversary A.

We have a set of n players, indexed 1, · · · , n, a trusted dealer, and an adversary
A. There is also a share signing algorithm SS, a share verification algorithm SV,
a share combining algorithm SC, and a signature verification algorithm Vrfy.

At the beginning of the game, the adversary selects a subset of k − 1 players
to corrupt. In the dealing phase, the dealer generates a public key pk along with
secret key shares sk1, · · · , skn, and verification keys VK = {vk1, · · · , vkn}. The
adversary obtains the secret key shares of the corrupted players, along with the
public key and verification keys. After the dealing phase, the adversary submits
signing requests to the uncorrupted players for messages of his choice. Upon such
a request, a player outputs a signature share for the given message.

We say that the adversary forges a signature if at the end of the game he
outputs a valid signature on a message that was not submitted as a signing
request to the uncorrupted players. We say that the threshold signature scheme
is unforgeable if it is computationally infeasible for the adversary to forge a
signature.

2.2 Pairings and Problem

Let G, GT be cyclic groups of prime order p, writing the group action multi-
plicatively. Let g be a generator of G. A bilinear map ê : G × G → GT is also
defined.

Definition 2. (Computational Diffie-Hellman CDH Assumption) The Compu-
tational Diffie-Hellman assumption is that, given g, gx, gy ∈ (G)3 for unknown
x, y ∈ Z∗

p , it is hard to compute gxy.
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2.3 Brief Review of Waters Signature Scheme

In EUROCRYPT’05, Waters [14] proposed an identity based encryption scheme.
From the private key extraction algorithm, a signature scheme without random
oracles has been constructed [14].

1. Gen. Choose α ∈ Zp and let g1 = gα. Additionally, two random values
g2, u

′ ∈ G and a random n-length vector U = (ui), whose elements are
chosen at random from G. The public key is pk = (g1, g2, u

′, U) and the
secret key is gα

2 .
2. Sign. To generate a signature on message M = (μ1, · · · , μn) ∈ {0, 1}n, pick

s ∈R Z∗
p and output the signature as σ=(gα

2 · (u′ ∏n
j=1 u

μj

j )s, gs) with his
secret key gα

2 .
3. Verify. Given a signature σ on message M = (μ1, · · · , μn) ∈ {0, 1}n, it

first parses σ = (σ1, σ2). Then it checks if the following equation holds:
ê(σ1, g)=ê(g2, g1) · ê (u′ ∏n

i=1 uμi

i , σ2). Output 1 if it is valid. Otherwise,
output 0.

2.4 Brief Review of GJKR’s DKG

Before we give the description of GJKR’s DKG, we review two fundamental
secret sharing schemes:

A. Shamir’s Secret Sharing [11]: Given a secret α, choose at random a
degree k − 1 polynomial function f ∈ Zp[X ] such that x = f(0). Give
to player Pi a share xi = f(i) mod p, where p is a prime. We will write
(x1, · · · , xn) ↔ (x) to denote such a sharing.

B. Feldman Verifiable Secret Sharing [6]: Like Shamir’s secret sharing
scheme, it generates for each player Pi a share xi = f(i) mod p, such that
(x1, · · · , xn) ↔ (x). If f(x)=

∑k−1
i=0 aix

i, then the dealer broadcasts the values
Ai = gai , where g is subgroup generator. This will allow the players to check
that the values xi really define a secret by checking that gxi=

∏k−1
j=0 Aij

j . It
will also allow detection of incorrect shares at reconstruction time. In the
following we will refer to this protocol by Feldman-VSS.

Pedersen proposed a DKG protocol in [9]. The basic idea in Pedersen’s DKG
protocol is to have n parallel executions of Feldman-VSS protocol in which each
player Pi acts as a dealer of a random secret zi that he picks. The secret value
x is taken to be the sum of the properly shared z′is. Since Feldman-VSS has the
additional property of revealing yi = gzi , the public value y is the product of
the yi’s that correspond to those properly shared z′is.

In spite of its use in many protocols, Pedersen’s DKG [9] cannot guaran-
tee the correctness of the output distribution in the presence of an adversary.
Specifically, Gennaro et al. [7] showed a strategy for an adversary to manipulate
the distribution of the resulting secret x to something quite different from the
uniform distribution. In contrast to the Pedersen’s DKG, Gennaro et al. [7] pre-
sented the GJKR’s DKG protocol that enjoys a full proof of security. It starts by
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running a commitment stage where each player Pi commits to a (k − 1)-degree
polynomial fi(z) whose constant coefficient is the random value, zi, contributed
by Pi to the jointly generated secret α. To realize the above commitment stage
it used the information-theoretic verifiable secret sharing protocol due to Ped-
ersen’s DKG. After the value x is fixed the parties can efficiently and securely
compute y = gx. Most importantly, this guarantees that no bias in the output
x or y of the protocol is possible, and it allows to present a full proof of secu-
rity based on a careful simulation argument. Each honest party Pj computes its
share xj of x, and we have that for the set of shares R: x =

∑
j∈R λjxj . Mean-

while, for each share xj , the value gxj can be computed from publicly available
information broadcast.

We now describe in detail the secure distributed key generation [7](GJKR’s
DKG):

1. In order to generating a secret key x, each player Pi performs interactively
as follows:
(a) Pi chooses two random polynomials fi(z), f ′

i(z) over Zp of degree k −1 :
fi(z) = ai0 +ai1z + · · ·+ai,k−1z

k−1, f ′
i(z) = bi0 + bi1z + · · ·+ bi,k−1z

k−1.
Let zi = ai0 = fi(0). Pi broadcasts Cit = gaithbik mod p for t = 0, · · · ,
k − 1. Pi computes the shares sij = fi(j), s′ij = f ′

i(j) mod p for j =
1, · · · , n and sends sij , s

′
ij to player Pj .

(b) Each player Pj verifies the shares he received from the other players. For
each i = 1, · · · , n, Pj checks if gsij hs′

ij =
∏k−1

t=0 (Cit)jt

mod p. If the check
fails for an index i, Pj broadcasts a complaint against Pi.

(c) Each player Pi who, as a dealer, received a complaint from player Pj

broadcasts the values sij , s′ij .
(d) Each player marks as disqualified any player that either received more

than k − 1 complaints in Step 1b, or answered to a complaint in Step 1c
with invalid values.

(e) Each player Pi then builds the same set of non-disqualified players QUAL
and sets his share of the secret as xi =

∑
i∈QUAL sji mod p, and the value

x′
i =

∑
i∈QUAL s′ji mod p.

2. Finally, they extract y = gx mod p as follows:
(a) Each player i ∈ QUAL exposes yi = gzi mod p via Feldman VSS and

broadcasts Ait = gait mod p for t = 0, · · · , k − 1. Then Pj verifies the
values broadcast by the other players in QUAL, namely, for each i ∈
QUAL, Pj checks if gsij =

∏k−1
t=0 (Ait)jt

mod p. If the check fails for an
index i, Pj complains against Pi by broadcasting the values sij , s

′
ij .

(b) For players Pi who receive at least one valid complaint, the other players
run the reconstruction phase of Pedersen-VSS to compute zi, fi(z), Ait

for t = 0, · · · , k − 1 in the clear.
(c) For all players in QUAL, set yi = Ai0 = gzi mod p. Compute y =∏

i∈QUAL yi mod p.

The above argument shows that the secret x can be efficiently recon-
structed, via interpolation, out of any k correct shares.
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We need to show that we can tell apart correct shares from incorrect ones. For
this we show that for each share xj , the value gxj can be computed from publicly
available information broadcast in Step 2a: gxj = g

∑
i∈QUAL

sij =
∏

i∈QUAL gsij

=
∏

i∈QUAL

∏k−1
t=0 (Ait)jt mod p. Thus the publicly available value gxj makes it

possible to verify the correctness of share xj at reconstruction time.
Meanwhile, for any set R of k correct shares, zi =

∑
j∈R λj · sij mod p, where

λj are appropriate Lagrange interpolation coefficients for the set R. Since each
honest party Pj computes its share xj as xj =

∑
i∈QUAL sij , then we have that

for the set of shares R: x =
∑

i∈QUAL zi =
∑

i∈QUAL(
∑

j∈R λj · sij)=
∑

j∈R λj ·
(
∑

i∈QUAL sij) =
∑

j∈R λjxj .

3 The Threshold Signature Scheme with Trusted Dealer

Let G be a bilinear group of prime order p. Given a pairing: ê : G × G → GT . A
random generator g ∈ G is also selected.

1. DKG. To generate public key, the trusted dealer picks α ∈ Zp and computes
g1 = gα. Additionally, two random values g2, u

′ ∈ G and a random n-length
vector U = (ui), whose elements are chosen at random from G, are also
generated.
a. It chooses a k − 1 degree function f(x) ∈ Zp(x) such that α = f(0) and

computes n secret key share (i, ski) for 1 ≤ i ≤ n by using Shamir secret
sharing scheme, which is defined as ski= g

f(i)
2 .

b. The public verification key VK consists of the n-tuple (gf(1), · · · , gf(n)).
Then, it sends to player Pi a share g

f(i)
2 for 1 ≤ i ≤ n.

c. The public key is (g1, g2, u
′, U, VK) and the secret key shares are ski for

1 ≤ i ≤ n.
2. SS. To generate a signature on message M = (μ1, · · · , μn) ∈ {0, 1}n, player i

picks ri ∈R Z∗
p and outputs the partial signature as σi=(ski ·(u′ ∏n

j=1 u
μj

j )ri ,
gri) with its secret key share ski.

3. SV. On input σi = (σi,1, σi,2), verification key vki, the verifier checks if the
following equation holds: ê(σi,1, g)=ê(g2, vki) · ê (u′ ∏n

j=1 u
μj

j , σi,2). Output
1 if it is valid. Otherwise, output 0.

4. SC. Let λ1, · · · , λk ∈ Zp be the Lagrange coefficients so that α = f(0) =∑k
i=1 λif(i). Assume signature share combination algorithm has |Φ| valid

signature shares σi = (σi,1, σi,2), where |Φ| ≥ k. Without loss of generality
we assume that player i = 1, · · · , k were used to generate the shares. The
signature combination algorithm computes the signature on message M as
σ = (

∏k
i=1(σi,1)λi ,

∏k
i=1(σi,2)λi).

5. Vrfy. Given a signature σ on message M = (μ1, · · · , μn) ∈ {0, 1}n, it
first parses σ = (σ1, σ2). Then it checks if the following equation holds:
ê(σ1, g)=ê(g2, g1) · ê (u′ ∏n

i=1 uμi

i , σ2). Output 1 if it is valid. Otherwise,
output 0.
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3.1 Efficiency Analysis

The new threshold signature scheme is non-interactive. Furthermore, signature
share generation algorithm requires only two exponentiation computation for
each player. Though [12] also gave a practical non-interactive threshold signature
scheme with trusted dealer based on RSA problem, it required one exponenti-
ation with zero-knowledge proof, which is actually not very efficient. Recently,
a short threshold signature scheme [13] has been proposed, however, it is very
inefficient for it requires the players generate signature shares interactively.

3.2 Security Result

Theorem 1. Under the CDH assumption, the proposed practical threshold sig-
nature scheme is a secure (unforgeable and robust) threshold signature scheme
resistant to k − 1 faults against a static malicious adversary, when the number
of player is n ≥ 2k − 1.

Proof. Our algorithm C described below solves CDH problem for a randomly
given instance {g, X = gx, Y = gy} and asked to compute gxy.
Setup: First, C defines g1 = X and sets an integer, m = 4qS , chooses an in-
teger, k′, uniformly at random between 0 and n. Choose a random n-length
vector, −→a = (ai), all are chosen uniformly at random between 0 and m − 1.
Then, the simulator chooses a random b′ ∈ Zp and an n-length vector, −→

b =
(bi), where the elements of −→

b are chosen at random in Zp. It then assigns
u′ = gp−km+a′

1 gb′
and the parameter U as ui = gai

1 gbi . The system parameters
params= (g, g1, u

′, (ui)) are sent to A. Two pairs of functions are defined for a
message M = {μ1, · · · , μn} ∈ {0, 1}n. We define F (M) = (p − mk) + a′ +

∑n
i=1

aμi

i . Next, we define J(M) = b′ +
∑n

i=1 bμi

i . Finally, define a binary function

K(M) as K(M) =
{

0, if a′ +
∑n

i=1 aμi

i ≡ 0 (mod m);
1, otherwise.

We assume w.l.o.g. that the adversary corrupted the first k−1 players P1, · · · ,
Pk−1. Then, C generates the secret key shares for the k − 1 corrupt players in
S. To do so, C first picks k − 1 random integers x1, · · · , xk−1 ∈ Zp. Let f ∈
Zp[X ] be the degree k − 1 polynomial implicitly defined to satisfy f(0) = x and
f(i) = xi for i = 1, · · · , k − 1. Algorithm C gives A the k − 1 secret key shares
ski = gxi

2 . These keys are consistent with this polynomial f since ski = g
f(i)
2 for

i = 1, · · · , k − 1.
Finally, C constructs the verification key VK, which is a n-vector (vk1, · · · , vkn)

such that vki = gf(i) for the polynomial f defined above, as follows:
For i ∈ S, computing vki is easy since f(i) is equal to one of the x1, · · · , xk−1,

which are known to C. Thus, vk1, · · · , vkk−1 are easy for C to compute.
For i 	∈ S, algorithm C needs to compute the Lagrange coefficients λ0,i, λ1,i,

· · ·, λk−1,i ∈ Zp such that f(i) = λ0,if(0) +
∑k−1

j=1 λj,if(j); these Lagrange
coefficients are easily calculated since they do not depend on f . Algorithm C
then sets vki = g

λ0,i

1 vk
λ1,i

1 · · · vk
λk−1,i

k−1 , which entails that vki = gf(i) as required.
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Once it has computed all the vki’s, C gives to A the verification key VK =
(vk1, · · · , vkn).

Signature Share Query: A issues up to qS signature share generation queries to
the uncorrupt players. Consider a signature share generation query to player
i 	∈ S. Let M=(μ1, · · · , μn) ∈ {0, 1}n be the message for signature share query.
If K(M) = 0, C will abort. Otherwise, C computes the simulated signature
share for M as follows: Algorithm B needs to return (i, (σi,0, σi,1)) where σi,0 =
gxi
2 · (u′ ∏n

j=1 u
μj

j )ri , σi,1=gri.
To do so, B first computes the Lagrange coefficients λ0, λ1, · · · , λk−1 ∈ Zp such

that f(i) = λ0,if(0) +
∑k−1

j=1 λj,if(j). Pick r′i ∈ Z∗
p and output the simulated

signature share as σi = (g
−λ0,i

J(M)
F (M)

2 (u′ ∏n
i=1 ui)r′

i · g
∑k−1

j=1 λj,if(j)
2 , g

−λ0,i
F (M)
2 gr′

i). The
correctness of the signature can be easily verified.

Finally, the adversary outputs a forged signature (σ∗
1 , σ∗

2) on message M∗ =
(μ∗

1, · · · , μ∗
n). If a′ +

∑n
i=1 a

μ∗
i

i 	= km, the challenger will abort. Otherwise, C will
compute gxy = σ∗

1
(σ∗

2 )J(M) .
For the simulation to complete without aborting, we require that all signature

queries on M will have K(M) 	= km, that forgery signature on message M∗ has
K(M∗) = 0 mod p. In fact, the probability analysis is very similar to [23].
So, we can get the probability of solving computational CDH problem as ε′ =

ε
16(qE+qS)qS(n+1)(m+1) if the adversary success with probability ε.

4 The Threshold Signature Scheme Without Trusted
Dealer

We have construct a threshold signature scheme with trusted dealer in last sec-
tion. However, in some situations, it does not have trusted dealer. So, in order to
generate threshold signature, the players should generate the public key jointly.
We assume that the involved n participants are connected by a broadcast chan-
nel. Furthermore, any one pair of the participants is connected by a private
channel. We also assume that there is a universal clock such that each partic-
ipant knows the absolute time, and the communication channel is (partially)
synchronous by rounds.

It is also assumed that an adversary can corrupt up to k − 1 of the n players
in the network, for any value of k − 1 < n

2 (this is the best achievable thresh-
old or resilience for solutions that provide both secrecy and robustness). We
consider a malicious adversary that may cause corrupted players to divert from
the specified protocol in any way. We assume that the computational power of
the adversary is adequately modelled by a probabilistic polynomial time Turing
machine. Furthermore, we consider a static adversary who chooses corrupted
participants at the beginning of each time period. For the robustness, it means
that the scheme can be successfully finished even if the adversary corrupts k − 1
participants at most.
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GJKR’s DKG protocol of [7] is based on the ideas similar to the protocol of
Pedersen [9], has comparable complexity, but provably fixes the weakness of the
latter. So, we use the GJKR’s DKG protocol in [7] to distributedly generate the
shared secret keys and output public keys. The system parameters are the same
with the scheme in section 3.

– DKG. To generate public key, n servers jointly generate user public key
g1 = gα by using GJKR’s DKG. Meanwhile, Each player Pi broadcasts gf(i)

for a random jointly generated degree k − 1 polynomial f ∈ Zp[X ] such
that α = f(0). Additionally, two values g2, u

′ ∈ G and a n-length vector
U = (ui), whose elements are from G, are also generated by using GJKR’s
DKG algorithm, respectively. Furthermore, player Pi gets its secret share
ski = g

f(i)
2 for 1 ≤ i ≤ n. The public verification key VK=(vk1, · · · , vkn)

consists of the n-tuple (gf(1), · · · , gf(n)). The public key is (g1, g2, u
′, U, VK)

and the shared secret keys are ski for 1 ≤ i ≤ n.
– SS, SV, SC, Vrfy algorithms are the same with section 2.4.

Correctness is obvious. Next, we will prove its robustness and unforgeablity.

4.1 Security Result

We also prove the unforgeability by using the concept of simulatable adversary
view [16] proposed by Gennaro et al.

Theorem 2. Under the CDH assumption, the proposed practical threshold sig-
nature scheme is a secure (unforgeable and robust) threshold signature scheme
resistant to k − 1 faults against a static malicious adversary, when the number
of player is n ≥ 2k − 1.

Proof. The robustness is evident.
The construction of DKG is the same with [7], which has been proved to be
simulatable. Next, we prove the protocol SS is simulatable:

Given public key (g1, g2, u
′, U, VK), message m = (μ1, · · · , μn) ∈ {0, 1}n, sig-

nature σ = (σ1, σ2), k − 1 shares (α1, · · · , αk−1) of the corrupted players, it
picks random values ri ∈ Zp and computes σi = gαi

2 · (u′ ∏n
j=1 u

μj

j )ri , gri) for
i = 1, · · · , k − 1. From the values σ = (σ1, σ2), and σi for i = 1, · · · , k − 1, simu-
lator generates σj = σ

σ
λj,i
i

, for j = k, · · · , n, with known Lagrange interpolation

coefficients λj,i.

5 Conclusion

A secure threshold signature scheme without trusted dealer is proposed in this
paper. Our construction is based on the recently proposed signature scheme of
Waters [14], combined with the new technique [3]. It is provably secure without
relying on the random oracle model. Additionally, signature share generation and
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verification is completely non-interactive. The new threshold signature scheme
is more efficient than the previous threshold signature schemes without random
oracles. Furthermore, it is the first threshold signature scheme based on the CDH
problem without relying on random oracles.
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Abstract. An aggregate signature is a single short string that convinces
any verifier that, for all 1 ≤ i ≤ n, signer i signed message mi, where the
n signers and n messages are distinct. The main motivation of aggregate
signatures is compactness. In this paper, the concept of aggregate proxy
signature (APS) is first proposed to compact the proxy signatures. Fur-
thermore, a concrete APS scheme is constructed, which can be proved to
be secure under the security model of APS. Additionally, as an applica-
tion of APS, the concept of verifiably encrypted proxy signature (VEPS)
is also first proposed in this paper, which can be used in contract sign-
ing. The VEPS allows the original signer to delegate another to sign the
contract on its behalf. Finally, a VEPS construction is derived from the
APS, which can be easily proved to be secure from the security of APS.

Keywords: Proxy signature, Aggregate signature, Random oracle,
Bilinear pairings.

1 Introduction

A proxy signature protocol allows an original signer to delegate its signing power
to another entity, called proxy signer, to sign messages on its behalf. The dele-
gated proxy signer can compute a proxy signature that can be verified by anyone
with access to the original signer’s public key. Proxy signatures have many prac-
tical applications such as in distributed system etc. [10] and are one of important
cryptographic protocols. The concept of proxy signature was first introduced by
Mambo, Usuda, and Okamoto [8] in 1996. After Mambo et al.’s first scheme
was published, many various types of proxy signature schemes have been pro-
posed such as short proxy signature scheme [5,7], one-time proxy signatures [16].
Also, there are a lot of proxy signature schemes were found flaws such as [11].
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The main reason is the lack of formal security model. Until 2003, the formal
security model was proposed in [1]. In this security model, a public key infras-
tructure setting (PKI) is also assumed, where each entity holds a public and
secret key pair.

The notion of aggregate signature schemes was introduced in 2003 by Boneh,
Gentry, Lynn and Shacham [3]. Basically, aggregating signatures means com-
pressing n signatures on n distinct messages from n distinct users into a unique
(shorter) signature. This is useful in many real-world applications. For exam-
ple, certificate chains in a hierarchical PKI of depth n consist of n signatures
by n different CAs on n different public keys. By using an aggregate signature
scheme, this chain can be compressed down to a single aggregate certificate. Af-
ter the concept of aggregate signatures was proposed, many types of aggregate
signatures have been presented such as identity-based aggregate signatures [4],
sequential aggregate signatures [13].

In this paper, the concept of aggregate proxy signature (APS) is first proposed.
Consider the following situations: n proxy signers have generated n proxy sig-
natures on n different messages on behalf of the same original signer. To verify
these proxy signatures, the ordinary method is to verify them one by one, which
costs large storage and computation. Reducing the amount of memory required
to store these proxy signatures and the computational time required to verify
their validity is the motivation for the concept of APS. An APS is obtained from
n different initial proxy signatures, ideally in such a way that: (1) the length
of the aggregate proxy signature is smaller than the sum of the length of the
n initial proxy signatures; (2) verifying the correctness of the aggregate proxy
signature costs less than verifying the n initial proxy signatures one by one. If an
aggregate proxy signature is verified as valid, then the receiver is convinced that
the n initial signatures are valid. On the other hand, if the aggregate signature
is invalid, the receiver is convinced that some initial proxy signature is not valid.

Next, we show an application of APS to verifiably encrypted proxy signature
(VEPS). It is known that verifiably encrypted signatures can be used in applica-
tions such as online contract signing [8]. Suppose Alice wants to show Bob that
she has signed a message, but does not want Bob to possess her signature of that
message. Alice can achieve this by encrypting her signature using the public key
of a trusted third party, and sending this to Bob along with a proof that she
has given him a valid encryption of her signature. Bob can verify that Alice
has signed the message, but cannot deduce any information from her signature.
Later, in the protocol, if Alice is unwilling or unable to reveal her signature, Bob
can ask the third party to reveal Alice’s signature.

However, consider the following situation: If either Alice or Bob is busy, they
can delegate their signing power to the other party, which is called as proxy
signer, to sign the contract on behalf of him or her. So, the concept of VEPS is
first presented in this paper to solve this problem. In this case, the proxy signer
of Alice, for example, wants to show Bob that it has signed a message on behalf
of Alice, but does not want Bob to possess its proxy signature on that message.
The proxy signer can achieve this by encrypting its proxy signature using the
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public key of a trusted third party, and sending this to Bob along with a proof
that it has given him a valid encryption of its proxy signature. Bob can verify
that the proxy signer has signed the message on behalf of Alice, but cannot
deduce any information from the encrypted signature. Later, in the protocol, if
the proxy signer is unwilling or unable to reveal its signature, Bob can ask the
third party to reveal its proxy signature.

Contributions. In this work we introduce the notion and security model of
APS. Roughly speaking, the new concept allows to efficiently manage multiple
proxy signatures addressed to a specific verifier. Furthermore, a concrete con-
struction is presented, which can be proved to be secure in the security model.
Additionally, the concept of VEPS is first proposed in this paper, which can be
used in contract signing. It allows the original signer to delegate another to sign
the contract on its behalf. A VEPS construction is also derived from the APS,
which can be easily proved to be secure from the security of APS.

2 Preliminaries

2.1 Definition

Definition 1 (APS). An APS scheme consists of 7 algorithms:(KeyGen, (D,P),
PSign, PVerify, Aggregate, Verify). The algorithms are specified as follows:

– KenGen The key generation algorithm, on input security parameter 1k, out-
puts user’s public key pk and corresponding secret key sk.

– (D,P) is a pair of interactive algorithms forming the proxy-designation pro-
tocol. The input to each algorithm includes two public keys pko, pki. D also
takes as input the secret key sko, and P also takes as input the secret key
ski. As result of the interaction, the expected local output of P is skp, a proxy
signing key that user pki uses to produce proxy signatures on behalf of user
pko.

– PSign The proxy signature generation algorithm, that takes as input a secret
key skp, a message m, returns the signature σ.

– PVerify The proxy signature verification algorithm, that takes input public
key pko, pki, a message m and a proxy signature σ, outputs 1 if it is a valid
proxy signature for m relative to pk. Otherwise, output 0.

– Aggregate The aggregate algorithm, that takes as input n different proxy sig-
natures σ1, · · · , σn of distinct messages m1, · · · , mn correctly signed by dif-
ferent users pk1, · · · , pkn, outputs an aggregate proxy signature σ;

– Verify The aggregate proxy signature verification algorithm, that takes as
input pko, pk1, · · · , pkn, n messages m1, · · · , mn and σ, returns 1 or 0 for
accept or reject, respectively.

2.2 Security Requirements

Adversary’s attack capabilities are modelled by providing it access to certain
oracles. We now introduce the oracles we will need and provide the adversary
with different subsets of this set of oracles.
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– APS Oracle: The aggregate proxy signing oracle, on input message m1,
· · ·, mn, pko, L = {y1, · · · , yn} for aggregate proxy signature, returns an
aggregate proxy signature σ such that APV(pko, L, m1, · · · , mn, σ) = 1.

– KR Oracle: The key registration oracle, on input key pair (pk, sk), first
checks if sk is indeed the secret key of pk. Then it stores (pk, sk) as a valid
registered key pair if it is. Otherwise, reject and output a special symbol ⊥ .

– DE Oracle: The delegation oracle, on input any registered public key pki,
and original public key pko, its secret key sko, returns a delegation on the
public key pki.

– RA Oracle: The random oracle, on input mi, outputs a randomly value ri

chosen in the domain of the hash function.

There are two types of unforgeability to consider in APS: Delegation unforge-
ability and aggregate proxy signature unforgeability. Delegation unforgeability
means that even if the adversary asks for polynomial users’ delegation, it is still
hard to output a forgery delegation that the original signer has not delegated.
Aggregate proxy signature unforgeability means that, except the proxy signers,
anyone else (even if the origin signer) cannot generate valid aggregate proxy
signature on behalf of these proxy signers.

2.2.1 Delegation Unforgeability
Delegation unforgeability for aggregate proxy signature is defined as in the fol-
lowing game involving an adversary A.

1. Let (pko, sko) ← KenGen(1k). A is given pko and the public parameters.
2. A accesses to RA Oracle, DE Oracle, and KR Oracle.

The adversary A wins the game if he can output m∗
1, · · · , m∗

n, L=(pk1, · · ·, pkn,),
such that L includes a public key pki that is not equal to any query of DE oracle
and σ∗ is a valid aggregate proxy signature with respect to pko. The advantage
of the adversary is the probability that he wins the game.

Definition 2. (Delegation Unforgeability) An aggregate proxy signature scheme
is delegation unforgeability secure if no probabilistic polynomial time (PPT) ad-
versary has a non-negligible advantage in the above game.

2.2.2 Aggregate Proxy Signature Unforgeability
We formalize this intuition as the aggregate chosen-key security model. In this
model, the adversary A is given a single proxy signer’s public key. His goal is
the existential forgery of an aggregate proxy signature. We give the adversary
power to choose all public keys except the challenge public key. The adversary is
also given access to a proxy signing oracle on the challenge key. His advantage,
AdvAggSig(A), is defined to be his probability of success in the following game.

– Setup: The aggregate forger A is provided with the challenge proxy signer’s
public key pk1 and original signer’s key pair (sko, pko), generated at random.
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– A requests proxy signatures with pk1 on behalf of original signer pko,
adaptively.

– A accesses to RA Oracle and KR Oracle.
– Finally, A outputs n−1 additional public keys pk2, · · · , pkn, which have been

queried to KR Oracle. Here n is at most N , a game parameter. These keys,
along with the initial key pk1, will be included in A’s forged aggregate. A
also outputs messages m∗

1, · · · , m∗
n, and, finally, an aggregate proxy signature

σ∗ by the n users on behalf of pko, each on his corresponding message. The
forger wins if the aggregate signature σ∗ is a valid aggregate on messages
m∗

1, · · · , m∗
n under public keys pk1, · · · , pkn, and σ∗ is nontrivial, i.e., A did

not request a proxy signature on m∗
1 under pk1.

An aggregate forger A (t, qH , qS , n, ε)-breaks an n-user APS scheme in the aggre-
gate chosen-key model if: A runs in time at most t; A makes at most qH queries
to the random oracle and at most qS queries to the APS oracle; AdvAggSig(A)
is at least ε; and the forged aggregate signature is by at most N users. An ag-
gregate signature scheme is (t, qH , qS , n, ε)-secure against existential forgery in
the aggregate chosen-key model if no forger (t, qH , qS , n, ε)-breaks it.

Definition 3. An APS is secure if AdvAggSig(A) is negligible for any PPT
adversary A.

2.3 Preliminaries

Before present our results, we review the definitions of groups equipped with a
bilinear pairings and a related assumption. Let G be a (multiplicative) cyclic
group of prime order p. Let g be a generator of G. We also let ê be a bilinear
map such that ê : G × G → G1 with the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v).

Definition 4. Computational Diffie-Hellman Assumption: Given g, gx,
gy ∈ (G)3 for unknown x, y ∈R Z∗

p , it is hard to compute gxy for any PPT
algorithm.

3 An APS Scheme

Let G be a bilinear group where |G| = p. Define a bilinear map ê : G× G → G1.
Meanwhile, define two collision-resistant hash functions H1 : G → G and H2 :
{0, 1}∗ → G. The construction of such hash function can be found in [2]. Then
the system parameters are params=(G, G1, ê, g, H1, H2).

1. KenGen. For original signer, it picks xo ∈ Zp and outputs (xo, yo = gxo) as
its key pair. The original signer’s secret key is xo and the public key is yo.
For user i, it chooses xi ∈ Zp and outputs (xi, yi = gxi) as its key pair. The
user i′s secret key is xi and the public key is yi.
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2. D. In order to delegate his signing capability to user i, the original signer
yo, on input yi, computes Si = [H1(yi)]xo as the corresponding delegation.

3. P. Given Si, the user i computes its proxy signing key as ski = (xi, Si).
4. PSign. Assuming the proxy signer i with public key yi wants to generate

signature on message m on behalf of yo, it computes H2(m)xi and outputs
the proxy signature σ = Si · H2(m)xi .

5. PVerify. On input the aggregate proxy signature σ, message m and yo, yi,
accept if ê(σ, g) = ê(H1(yi), yo) ê (H2(m), yi).

6. Aggregate. On input n proxy signatures σ1, · · · , σn on n different messages
m1, · · · , mn by n distinct proxy signers y1, · · · , yn, output σ=σ1 · · · σn as the
aggregate proxy signatures.

7. Verify. On input σ on n different messages m1, · · · , mn by n distinct proxy
signers y1, · · · , yn, accept if ê(σ, g) =

∏n
i=1(ê(H1(yi), yo) ê (H2(mi), yi)).

3.1 Security Results

Theorem 1. In random oracle model, the APS scheme is delegation unforgeable
if CDH assumption holds in bilinear groups.

Proof. If there exists an adversary A breaks the scheme, then we show there
exists an algorithm C that, by interacting with A, solves the CDH problem. Our
algorithm C described below solves CDH problem for a randomly given instance
{g, gx, gy} and asked to compute gxy. The details are as follows.

C runs A on input yo = gx as target user’s public key, handling all of A’s
requests and answering all A’s queries as follows:

– H-queries: Assume A makes at most qH1 times to H1-oracle and qH2 times
to H2-oracle, respectively. When A queries mi to H2-oracle, C answers
H2(mi) = gm̂i for a random m̂i ∈ Zp. Furthermore, C randomly chooses
a s ∈ [1, qH1 ] and prepares ti ∈ Zp for 1 ≤ i ≤ qH1 . When A queries yi to
H1-oracle, C answers H1(yi) = gti if i �= s. Otherwise, H1(ys) = gy if i = s.

– Key Registration Queries: If A requests to register a new user i by outputting
(xi, yi), C stores these keys as valid registered key pair.

– Delegation Queries: If A requests to designates i with registered public key
yi, it assumes A has requested H1 query on yi. If i �= s, C knows the value
ti such that H1(yi) = gti . So cert is yti

o . Otherwise, it aborts.

Finally, A outputs a forgery of aggregate proxy signature (m∗
1, · · · , m∗

n, L, σ∗),
such that L includes a public key y∗ that is not equal to any query of DE
Oracle and σ∗ is a valid aggregate proxy signature with respect to pko and L on
message m∗. Assume L={y1, · · · , yn}, such that ys = y∗. It satisfies ê(σ∗, g) =∏n

i=1(ê(H1(yi), yo) ê (H2(m∗
i ), yi)), which implies σ∗ =

∏n
i=1 H1(yi)xH2(m∗

i )
xi .

Because H2(mi) = m̂i, H1(y∗) = gy, and H1(yi) = gti for yi �= y∗, we can

compute gxy=σ∗/
∏n

i=1 y
m̂∗

i
i

∏
i∈{1,···,n}\s yti

o and solve the CDH problem.
It is easy to see that if A outputs a forgery of aggregate proxy signature with

probability ε, then CDH problem can be solved with probability about 1
qH1

· ε.
So, we can say that the APS scheme is delegation unforgeability secure in the
random oracle if CDH assumption holds.
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Theorem 2. In random oracle model, the APS scheme is aggregate proxy sig-
nature unforgeable if CDH assumption holds in bilinear groups.

Proof. We show there exists an algorithm C that, if there exists an adversary
A breaks the scheme, by interacting with A, solves the CDH problem. Our
algorithm C described below solves CDH problem for a randomly given instance
{g, gx, gy} and asked to compute gxy.

C chooses xo and computes yo = gxo. Then it sends (xo, yo) to the adversary.
C runs A on input y1 = gx as target proxy user’s public key, handling all of A’s
requests and answering all A’s queries as follows:

– H-queries: Assume A makes at most qH1 times to H1-oracle and qH2 times to
H2-oracle, respectively. When A queries yi to H1-oracle, C answers H1(yi) =
gri for a random ri ∈ Zp. Furthermore, C randomly chooses a s ∈ [1, qH2 ].
When A queries mi to H2-oracle, C answers H2(mi) = gti if i �= s. Otherwise,
H2(ms) = gy if i = s.

– Key Registration Queries: If A requests to register a new user by outputting
(x, y = gx), C stores these keys as valid registered key pair.

Finally, A outputs a forgery of aggregate proxy signature (m∗
1, · · · , m∗

n, L =
{y1, · · · , yn}, σ∗), such that σ∗ is a valid aggregate proxy signature with respect
to pko and L on message m∗

1, · · · , m∗
n. It satisfies ê(σ∗, g) =

∏n
i=1(ê(H1(yi),

yo) ê (H2(m∗
i ), yi)). If m∗

1 = ms, we have H2(m∗
1) = gy and H2(m∗

i ) = gti

for mi �= ms. Finally, C can compute gxy=σ/(
∏

i∈{1,···,n} yri
o

∏
i∈{1,···,n}\s yti

i ).
Otherwise, C aborts.

It is easy to see that if A outputs a forgery of APS with probability ε, then
CDH problem can be solved with probability about 1

qH2
· ε. So, we can say that

the APS scheme is secure in the random oracle if CDH assumption holds.

In this paper, we only deal with the proxy signatures on behalf the same original
signer. But, in many applications, the proxy signatures on behalf different signers
are also practical. So, we think how to solve this question is also interesting,
including its security model and scheme. We do not show details here for space.

4 Verifiably Encrypted Proxy Signature Scheme

Next, we show an application of APS to VEPS. Verifiably encrypted signatures
(VES) are used in applications such as online contract signing [8]. However, if
one of the two party is busy, they can delegate their signing power to the other
party, which is called as proxy signer, to sign the contract on behalf of him or
her. So, the concept of VEPS is first presented to solve this problem. From the
APS, a VEPS can be easily constructed.

Definition 5 (VEPS). A VEPS comprises nine algorithms: KeyGen, (D,P),
PSign, PVerify, AdjKeyGen, VEPSigCreate, VEPSigVerify, and Adjudicate, provide
the verifiably encrypted signature capability. The algorithms are described below.
We also refer to the trusted third party as the adjudicator.
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– KeyGen, (D,P), PSign, and PVerify are the same with their corresponding defi-
nitions in APS.

– AdjKeyGen. This algorithm generates key pair (ASK, APK) for the
adjudicator.

– VEPSigCreate. Given a proxy signing key skp, message m, adjudicator’s pub-
lic key APK, it outputs the verifiably encrypted proxy signature σ.

– VEPSigVerify. Given original public key pko, proxy signer’s public key pki, a
message m, an adjudicator’s public key APK, and a signature σ, verify if σ
is a valid verifiably encrypted proxy signature on m.

– Adjudicate. Given an adjudicator’s secret key ASK, and a verifiably encrypted
proxy signature σ on some message m, extract and output σ′, an ordinary
proxy signature on m of proxy signer pki on behalf of pko.

We require three security properties of VEPS: validity, unforgeability, and opac-
ity, which is similar to [3].

– Validity requires that ordinary proxy signature verify, verifiably encrypted
proxy signatures verify, and that adjudicated verifiably encrypted signatures
verify, i.e., that PVerify(m,PSign(m)), VESigVerify(m,VESigCreate(m)) and
PVerify(m,Adjudicate(VESigCreate(m))) hold for all m.

– There are two types of unforgeability, including delegation unforgeability
and verifiably encrypted proxy signature unforgeability. Delegation unforge-
ability requires that it be difficult to forge a valid verifiably encrypted proxy
signature of an unauthorized user. Verifiably encrypted proxy signature un-
forgeability requires that it be difficult to output a verifiably encrypted proxy
signature by anyone else, even the original user, except the right proxy signer.

– Opacity requires that it be difficult, given a VEPS, to extract an ordinary
proxy signature on the same message, given access to a VEPS creation oracle
and an adjudication oracle, maybe along with a hash (random) oracle. The
opacity can easily be achieved in our construction based on the assumption
that given an APS of n signatures it is difficult to extract the individual
proxy signatures.

Let G be a bilinear group where |G| = p. Define a bilinear map ê : G× G → G1.
Meanwhile, define two collision-resistant hash functions H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → G. The system parameters are params=(G, G1, ê, g, H1, H2).

1. KenGen. For original signer, it picks xo ∈ Zp and outputs (xo, yo = gxo) as
its key pair. The original signer’s secret key is xo and the public key is yo.

2. D. In order to delegate his signing capability to user with registered public
key pair (x, y = gx), then original signer, on input y, computes S = [H1(y)]xo

as the corresponding delegation.
3. P. Given S, the user computes its proxy signing key as skp = (x, S).
4. PSign. Assume the proxy signer wants to generate proxy signature on mes-

sage m on behalf of original signer with public key yo. It computes the proxy
signature σ = S · [H2(m)]x.
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5. PVerify. On input σ, a message m and yo, y, accept if ê(σ, g) = ê(H1(y),
yo) ê (H2(m), y).

6. AdjKeyGen. For adjudicator, it picks xa ∈ Zp and outputs (xa, ya = gxa)
as its key pair. The adjudicator’s secret key is xa and the public key is ya.

7. VEPSigCreate. Given a proxy signing key skp = (x, S), a message m ∈
{0, 1}∗, and adjudicator’s public key ya, it signs as follows:

a. Compute h = H2(m), where h ∈ G, and σ = hx · S.
b. Select r at random from Zp, set u = gr and compute σ′ = (ya)r.

c. Aggregate σ and σ′ as ω = σσ′.

Finally, the verifiably encrypted proxy signature is the pair (ω, u). (This can
also be viewed as ElGamal encryption of σ under the adjudicator’s key.)

8. VEPSigVerify. Given public keys yo, y, a message m, adjudicator’s public
key ya, and a verifiably encrypted proxy signature (ω, u), set h = H2(m);
accept if ê(ω, g) = ê(yo, H1(y)) · ê(y, h) ·ê(u, ya) holds.

9. Adjudicate. Given adjudicator’s private key xa, and a verifiably encrypted
proxy signature (ω, u) on some message m, ensure that the verifiably en-
crypted proxy signature is valid by running algorithm VEPSigVerify; then
output the proxy signature σ = ω/uxa.

4.1 Security Results

Our VEPS scheme depends on the assumption that given an aggregate signature
of k signatures it is difficult to extract the individual signatures. We posit that
it is difficult to recover the individual signatures σi given their aggregate σ, and
the messages. In fact, for the VEPS is only constructed from an aggregate proxy
signature of 2 proxy signatures, its security can be reduced to the following
problem [3].

Definition 6. Given ga, gb, gx, gy, and gax+by ∈ G, it is hard to output the
value gax.

In the bilinear aggregate proxy signature scheme, it is difficult to extract individ-
ual proxy signatures, under the aggregate extraction assumption [3]. For more
details, the reader can be referred to [3]. We can get the following two secu-
rity results easily from the security of APS with the above aggregate extraction
problem [3]:

Theorem 3. In random oracle model, the VEPS scheme is unforgeable (dele-
gation unforgeable and verifiably encrypted proxy signature unforgeable) if CDH
assumption holds in bilinear groups.

Theorem 4. In random oracle model, the VEPS scheme achieves opacity if
CDH assumption holds in bilinear groups.
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5 Conclusion

In this paper we introduce the notion and security model of APS, which allows to
compress the proxy signatures on different messages from different proxy signers
into one. Meanwhile, a concrete APS scheme is presented, and it can be proved to
be secure in the security model. Additionally, as an application of APS, the con-
cept of verifiably encrypted proxy signature is also proposed in this paper, which
can be used in contract signing. It allows the original signer to delegate another
to signing the contract. A VEPS construction is also derived from the APS and
can be easily proved to be secure from the properties of the corresponding APS.
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Abstract. In a seminal paper of identity based encryption (IBE), Boneh
and Franklin [4] mentioned an interesting transform from an IBE scheme
to a signature scheme, which was observed by Naor. In this paper, we
give formal security treatments for this transform and discover several
implications and separations among security notions of IBE and trans-
formed signature. For example, we show for such a successful transform,
one-wayness of IBE is an essential condition. Additionally, we give a
sufficient and necessary condition for converting a semantically secure
IBE scheme into an existentially unforgeable signature scheme. Our re-
sults help establish strategies on design and automatic security proof
of signature schemes from (possibly weak) IBE schemes. We also show
some separation results which strongly support that one-wayness, rather
than semantic security, of IBE captures an essential condition to achieve
secure signature.

1 Introduction

Identity-based encryption (IBE) [17,4] is a public key encryption scheme where a
user’s public key can be any bit string, such as an email address. Although IBE
was originally advocated to simplify public key certificate management, it has
now been shown a powerful tool constructing various cryptographic applications:
key-insulated encryption, forward secure encryption and public key encryption
with keyword search , etc. In this paper, we investigate another application of
IBE, whose observation was attributed to Naor, saying that “an IBE scheme
can immediately be converted into a public key signature scheme” [4].

In IBE, a private key generator (PKG) uses his master key msk to issue a
decryption key d which corresponds to an arbitrary bit string “ID”. Here, msk
can also be seen as a signing key of the PKG, and by letting ID = M (M is
a message), d becomes the PKG’s signature for M . The signature verification
can be done by checking if d functions properly as a correct decryption key for
identity “M” by encrypting a random plaintext and checking if the ciphertext
can be decrypted to the original plaintext. We hereafter call this transformation

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 218–227, 2007.
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the Naor Transform (NT), and denote NT (Π) as a signature scheme derived
from an IBE scheme Π via NT (A detailed description is give in Sec. 3).

1.1 IBE and Naor-Transformed Signatures

IBE. Boneh and Franklin [4] defined the security model and proposed the first
full-fledged IBE, using bilinear maps and assuming random oracles. Indepen-
dently, Cocks [9] also presented an IBE scheme based on the decisional quadratic
residue assumption. Gentry and Silverberg [12] generalized the model of IBE
with a hierarchical structure, and proposed hierarchical IBE (HIBE) schemes.
Canetti, Halevi, and Katz [7] proposed an IBE whose security can be proven
without random oracles but in a weaker security notion, called the selective-ID
(sID) model [7]. Interestingly, sID IBE implies chosen ciphertext security (CCA)
[15,16,8]. IBE The first fully secure (adaptively chosen ID secure) IBE system
without random oracles was presented [3]. Waters [18] subsequently simplified
the scheme from [3]. Recently, Gentry [11] presented a more efficient scheme with
tight security reduction, relying on a stronger assumption.

Naor-Transfromed Signatures. Boneh, Lynn, and Shacham applied NT to
the Boneh-Franklin IBE [4], and proposed the famous short signature [5]. Gentry
and Silverberg proposed a hierarchical identity-based signature (HIBS) scheme
from their HIBE scheme via NT [12]. Furthermore, Waters [18] presented the
first (efficient) signature scheme whose security can be reduced to hardness of the
computational Diffie-Hellman (CDH) problem. A subsequent paper [6] strength-
ened the Waters signature to have strong unforgeability.

Boneh and Franklin [4], and Waters [18] remarked (in an informal way) the
security of Naor-transformed signatures: “If IBE is semantically secure against
adaptive chosen identity and adaptive chosen ciphertext attacks (IND-ID-CCA) [4],
then the signature scheme is existentially unforgeable against adaptive chosen
message attacks (UF-CMA) [14]”.

Posed a deeper consideration, the statement is true, yet with some sub-
tle aspects that we later clarify. More importantly, since we are interested in
“generic” applications of NT, we further wonder whether this statement admits
of a broader interpretation. Namely, we would like to ask, for example, the fol-
lowing question: What are sufficient and/or necessary conditions for underlying
IBE to achieve UF-CMA signature? Previous rich body of research on IBE seems
not to have ready answers for such kind of “general questions”. In particular,
it should be noted that the security of signatures from [5,12,18,6] was analyzed
individually and was very specific to their schemes.

1.2 Our Contributions

The main theoretical results are relations among security notions for IBE and
signature, which are depicted in Figure 1. Our results help understand both prim-
itive better, especially on the nature of a signature scheme with a randomized
verification algorithm, which was rarely studied before. Throughout this paper,
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Fig. 1. Relations among Security notions for IBE and Signature

we limit our scope within only basic NT with a single encrypt-then-decrypt ver-
ification for some reasons (See Sec. 3). As an important remark, some of our
separation results may not hold if one considers other verification procedures.
Especially, IND-ID-CPA implies UF-CMA if iterative encrypt-then-decrypt verifi-
cation is introduced.

Let “X →NT Y ” denote “a signature scheme NT (Π) always satisfies con-
dition Y if an IBE scheme Π satisfies condition X”, “X �→NT Y ” denote
“there exists Π such that NT (Π) may not satisfy Y even if Π satisfies X”, and
OW-ID-CPA (resp. IND-ID-CPA) [4] denotes one-wayness (resp. semantic secu-
rity) against adaptive chosen identity and adaptive chosen plaintext attacks.

Implications. We show implications among notions for IBE and signature. We
notice that most of the time, even very weak IBE implies strong digital signa-
ture. These supports the belief that IBE is a significantly stronger cryptographic
primitive than signature.

1. ...................OW-ID-CPA .........→NT ...............UF-CMA.................(Theorem....1). This is, strongly secure signatures
can be derived from considerablyweak IBE schemes. An immediate corollary
states that ...................IND-ID-CPA....∧..............L-PTXT..........→NT ...............UF-CMA.................(Corollary.....1), where we
say Π satisfies L-PTXT if 1/|M| is negligible (M and |M| are the message
space of Π and the cardinality of M, respectively).

2. .............L-CTXT .........→NT ..............UF-CMA.................(Theorem....2). Roughly speaking, Π satisfies condition
L-CTXT if it is even hard to generate a “fake key” (without using PKG’s
master key) which maps a randomly chosen valid ciphertext onto M. See
Def. 4 for details. It is not difficult to determine whether an IBE scheme
satisfies L-CTXT or not.

3. ..If.....Π....is........................GOAL-ID-ATK .......and.............NT (Π)....is................UF-CMA,.........then....Π..............satisfies..............L-PTXT....∨
.............L-CTXT.................(Theorem....3), where GOAL ∈ {OW, IND} and ATK ∈ {CPA, CCA}.
This implies L-PTXT ∨ L-CTXT is necessary and sufficient condition to
achieve UF-CMA from IND-ID-CPA. It should be also noted that Π is not
required to have a large message space if it satisfies L-CTXT.

4. .........There..........exists.....Π.........such........that.....Π .......and..............NT (Π)............satisfy....................IND-ID-CPA....∧.................¬L-PTXT

......and................UF-CMA,....................respectively.................(Theorem.....4). On the other hand, ........there...........exists
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...Π........such........that.....Π .......and.............NT (Π)............satisfy....................IND-ID-CPA...∧.................¬L-CTXT.......and................UF-CMA,

..................respectively.................(Theorem....5).

Separations. We also show separations among security notions, which as usual,
are demonstrated by counterexamples. However, these counterexamples are quite
natural and non-trivial, which we believe form good guidance in building prac-
tical signature schemes from IBE.

5. ...................IND-ID-CCA..........�→NT ...............UF-CMA.................(Theorem.....6). This implies that NT (Π) is not
always secure even if Π satisfies the strongest security (i.e. IND-ID-CCA) for
IBE. Actually, the separation is demonstrated by constructing various IND-
ID-CCA secure IBE schemes that satisfy ¬L-PTXT ∧ ¬L-CTXT. It should
be noticed that it is easy to achieve L-PTXT from IND-ID-CCA IBE by a
simple modification: just enlarge the input plaintext domain by encrypting
in parallel. However, this modification is considered as a method to acquire
one-wayness from semantic security, and this fact supports our first result
“OW-ID-CPA →NT UF-CMA”, which establishes an essential relation be-
tween IBE and signatures.

6. ...................IND-ID-CCA....∧..............L-PTXT....∧...............L-CTXT..........�→NT ................sUF-CMA.................(Theorem.....7). Interest-
ingly, this shows even the strongest IBE does not imply sUF-CMA secure
Naor-transformed signature. This immediately implies that OW-ID-CPA�→NT

sUF-CMA. Here, roughly speaking, sUF-CMA [1] means inability of adver-
saries to forge any signature even for any message signed before.

Applications. The first application is to provide automatic proof for signature
schemes derived from IBE via NT. In the future, if a new IBE scheme is designed,
a signature scheme corresponding to this IBE scheme will be constructed auto-
matically with a proof. However, we note that our security proof may afford
a price of a possibly stronger assumption. As another important application,
one can relax requirements for a secure channel between a user and PKG. In
an IBE system, each user’s decryption key has to be securely transferred from
PKG, therefore, a secure channel is needed. However, a user’s decryption key
can be also considered as PKG’s signature based on NT, and consequently, only
a channel with confidentiality is required for PKG.

2 Definitions

Define x
R← X as x being generated randomly and uniformly from a finite set

X . If A is an algorithm, x←A means that the output of A is x. When y is not
a finite set nor an algorithm, x←y is an assignment operation. | · | is defined as
the bit length if “·” is an element of a finite set (respectively, the cardinality of
the set if “·” is a finite set). Let “||” denote string concatenation. When we say
that ε(k) is negligible, it means that for any constant c there exists k0 ∈ N, such
that ε < (1/k)c for any k > k0.
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2.1 Identity-Based Encryption

An identity-based encryption (IBE) scheme Π consists of four probabilistic poly-
nomial time (PPT) algorithms: Π = (Setup, Ext, Enc, Dec). The setup algorithm
Setup takes as input 1k, and generates public system parameter PK and mas-
ter key msk, where k is a security parameter. The key extraction algorithm Ext
takes as input msk, ID ∈ {0, 1}∗ and PK, and returns the corresponding decryp-
tion key SKID. The encryption algorithm Enc takes as input ID, M ∈ M, PK,
and outputs ciphertext C ∈ C, where M and C are the plaintext and cipher-
text spaces, respectively. The decryption algorithm Dec takes as input SKID, C
and PK, and outputs M or ⊥, where ⊥ is a special symbol. We require that
for all (msk, PK)(= Setup(1k)), all ID, all SKID(= Ext(msk, ID, PK)), all M , and
C(= Enc(ID, M, PK)), Dec(SKID, C, PK) = M .

One-wayness. We define one-wayness for IBE, i.e., OW-ID-CPA [4]. Let A =
(A1, A2) and k be an adversary and the security parameter, respectively. Now
consider the following experiment:

Experiment Expow-id-cpa
A,Π (k) : [(PK, msk) ← Setup(1k);

(ID∗, s) ← AOe
1 (PK); M R← M; C∗ ← Enc(ID∗, M, PK);

M ′ ← AOe
2 (s, C∗); return 1 if M ′ = M, or 0 otherwise],

where Oe is a key extraction oracle which for a given identity ID, returns SKID(=
Ext(msk, ID, PK)). The only restriction is that ID∗ is not allowed to submit to
Oe. We define εowe,A = Pr[Expow-id-cpa

A,Π (k) = 1].

Definition 1 (OW-ID-CPA) . We say Π is (t, qe, ε)-OW-ID-CPA secure if for
any adversary A in time bound t with at most qe queries to Oe, εowe,A ≤ ε. As
shorthand, we say that Π is OW-ID-CPA secure if ε is negligible.

Indistinguishability. Semantic security [13] for IBE, i.e. IND-ID-ATK [4] where
ATK ∈ {CPA, CCA}, is defined as follows. Let A = (A1, A2) and k be an adver-
sary and the security parameter, respectively. For atk ∈ {cpa, cca}, consider the
following experiment:

Experiment Expind-id-atk
A,Π (k) : [(PK, msk) ← Setup(1k);

(ID∗, M0, M1, s) ← AOe,Od

1 (PK); b R← {0, 1}; C∗ ← Enc(ID∗, Mb, PK);

b′ ← AOe,Od

2 (s, C∗); return 1 if b′ = b, or 0 otherwise],

where Oe and its restriction are the same as the above, Od is a decryption oracle
which for given (ID, C), returns M(or ⊥)(= Dec(SKID, C, PK)) if atk = cca, or
a random bit string if atk = cpa. The only restriction is that (ID∗, C∗) is not
allowed to submit to Od. We define εind-atk,A = | Pr[Expind-id-atk

A,Π (k) = 1] − 1/2|.
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Definition 2 (IND-ID-ATK). We say Π is (t, qe, qd, ε)-IND-ID-CCA (resp.(t, qe, ε)-
IND-ID-CPA) secure, if for any A in time bound t with at most qe queries to Oe

and qd queries to Od, εind-cca,A ≤ ε (resp. εind-cpa,A ≤ ε). As shorthand, we say
that Π is IND-ID-CCA (resp. IND-ID-CPA) secure if ε is negligible.

Above security definitions have mainly considered adaptive chosen ID (ID) at-
tack, however one can easily adjust the definitions to selective ID (sID) attack
[7]. The only difference between the two attack model is that for sID attack, the
target identity ID∗ must be selected by A before the key generation algorithm
Setup is run.

Largeness of Plaintext and Ciphertext Spaces. Interestingly, security of
Naor-transformed signatures is significantly influenced by sizes of the plaintext
and the ciphertext spaces of the underlying IBE. In following experiments, let
Π = (Setup, Ext, Enc, Dec) be an IBE scheme.

Definition 3 (L-PTXT). We say an IBE scheme Π is γ-L-PTXT if 1/|M| ≤ γ.
As shorthand, we say that Π is L-PTXT if γ is negligible.

Now consider the following experiment:

Experiment Expl-ctxt
A,Π (k) : [(PK, msk) ← Setup(1k);

(ID∗, SK′
ID∗) ← AOe(PK); M R← M; C∗ ← Enc(ID∗, M, PK);

M ′ ← Dec(SK′
ID∗ , C∗, PK); return 1 if M ′ ∈ M, or 0 otherwise],

where Oe and its restriction are the same as the above. We define ε�-ctxt,A =
Pr[Expl-ctxt

A,Π (k) = 1].

Definition 4 (L-CTXT). We say Π is (t, qe, ε)-L-CTXT if for any A in time
bound t with at most qe queries to Oe, ε�-ctxt,A ≤ ε. As shorthand, we say that
Π is L-CTXT if ε is negligible.

2.2 Digital Signature

Signature. A signature scheme Σ consists of three PPT algorithms: Σ =
(Gen, Sig, Ver). The key generation algorithm Gen takes as inputs 1k, and gener-
ates signing key SigK and verification key VK. The signing algorithm Sig takes
as inputs SigK, m ∈ {0, 1}∗, and VK, and outputs (σ, m), where m is a message
to be signed. The verification algorithm Ver takes as inputs VK, σ′, and m′, and
outputs accept or reject. We require that for all (SigK, VK)(= Gen(1k)), all m,
all (σ, m)(= Sig(SigK, m, VK)), we have Ver(VK, σ, m) = accept.

Unforgeability. Here, we define unforgeability for signature UF-CMA [14], and
its stronger version, sUF-CMA [1]. Let Σ = (Gen, Sig, Ver) be a signature scheme.
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Let A and k be an adversary and the security parameter, respectively. For
goal ∈ {uf, suf}, consider the following experiment:

Experiment Expgoal-cma
A,Σ (k) : [(SigK, VK) ← Gen(1k);

(σ∗, m∗) ← AOs(PK); return Ver(VK, σ∗, m∗)],

where Os is a signing oracle which for a given message m, returns (σ, m). The
only restriction is that m∗ is not allowed to submit to Os if goal = uf, or that
(σ∗, m∗) is not allowed to be one of responses from Os if goal = suf. We define
εgoal-cma,A = Pr[Expgoal-cma

A,Σ (k) = accept] for goal ∈ {uf, suf}.

Definition 5 ((s)UF-CMA). We say Σ is (t, qs, ε)-UF-CMA (resp. sUF-CMA) if
for any A in time bound t with at most qs queries to Os, εuf-cma,A ≤ ε (resp.
εsuf-cma,A ≤ ε). As shorthand, we say that Σ is UF-CMA (resp. sUF-CMA)
secure if ε is negligible.

3 A Generic Conversion from IBE to Signature

Let Π = (Setup, Ext, Enc, Dec) be an IBE scheme. Then, a Naor-transformed
signature scheme NT (Π) = (Gen, Sig, Ver) consists of three algorithms, which
are depicted in Table 1.

Table 1. Algorithms of NT (Π)

Algorithm Gen(1k) Algorithm Sig(SigK, m, VK) Algorithm Ver(VK, σ, m)

(PK, msk) ← Setup(1k); ID ← m; ID ← m; SK′

ID ← σ; M
R
← M;

SigK ← msk; SKID ← Ext(SigK, ID, VK); C ← Enc(ID, M, VK);
VK ← PK; σ ← SKID; M ′ ← Dec(SK′

ID, C, VK);
return (SigK,VK) return (σ, m) if M ′ = M , return accept;

else return reject

NT can be also extended to other types of IBE schemes. For example, applying
NT to an (�+1)-level HIBE scheme [12], one gains an �-level HIBS scheme. Ap-
plying NT to an sID secure IBE scheme [7,2], a signature scheme with “selective
unforgeability” is then acquired. In this paper, we regard the above transforma-
tion as Naor Transform (NT), since it is the most natural and basic formalization
of the intuitive explanation of [4] and [18]. We also discuss some variants of NT
in the full paper [10].

4 Implication Results

Denote the IBE scheme Π and a corresponding signature NT (Π) as Π =
(Setup, Ext, Enc, Dec) and NT (Π) = (Gen, Sig, Ver). We present several theorems
regarding implications among security definitions regarding Π and NT (Π). For
the limitation of space, the proofs are given in the full paper [10].
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Theorem 1 (OW-ID-CPA →NT UF-CMA). If an IBE schemeΠ is(t+O(τ), q, ε)-
OW-ID-CPA secure, NT (Π) is (t, q, ε)-UF-CMA secure. Here τ is the upper bound
of time for one decryption operation.

Corollary 1 (IND-ID-CPA ∧ L-PTXT →NT UF-CMA ). If an IBE scheme Π
is (t+O(τ), q, ε−γ

2−2γ )-IND-ID-CPA secure and γ-L-PTXT, then NT (Π) is (t, q, ε)-
UF-CMA secure. Here, τ is the upper bound of time for one decryption operation.

One may wonder in order to build a secure signature NT (Π) from semantically
secure IBE Π that is not L-PTXT, whether one has to first enlarge the plain-
text space, e.g., by adopting interactive verifications. However, this is sometimes
unnecessary. L-CTXT alone implies NT (Π) is UF-CMA secure, namely,

Theorem 2 (L-CTXT →NT UF-CMA). If IBE Π is (t, q, ε)-L-CTXT secure,
then NT (Π) is (t, q, ε)-UF-CMA secure.

The following theorem implies L-CTXT is a “properly correct” condition for IBE
schemes to derive secure signatures. More precisely, L-CTXT ∨ L-PTXT is a
necessary and sufficient condition for extracting UF-CMA secure signature from
IND-ID-CPA secure IBE.

Theorem 3. If IBE Π is GOAL-ID-ATK secure (GOAL∈{OW,IND},
ATK∈{CPA,CCA}) and NT (Π) is UF-CMA secure, then Π always satisfies
L-PTXT or L-CTXT.

The following theorem shows L-CTXT is actually a natural and sufficiently weak
notion. Many weak IBE schemes actually meet L-CTXT.

Theorem 4. There exists an IBE scheme Π such that Π and NT (Π) satisfy
IND-ID-CPA ∧ ¬L-PTXT and UF-CMA, respectively.

Theorem 5. There exists an IBE scheme Π such that Π and NT (Π) satisfy
IND-ID-CPA ∧ ¬L-CTXT and UF-CMA, respectively.

5 Separation Results

Here, we show impossibility of proving UF-CMA security of Naor-transformed
signatures (with a single verification) solely based on indistinguishability of un-
derlying IBE. This result supports that indistinguishability is not an essential
requirement to provide secure Naor-transformed signatures but one-wayness is.
For the limitation of space, the proofs are left to the full paper [10].

Theorem 6 (IND-ID-CCA �NT UF-CMA). There exists an IND-ID-CCA secure
IBE scheme Π such that NT (Π) is not UF-CMA secure.

In addition, we present separation results on the relation among security notions
for IBE and sUF-CMA security of signature, even if this IBE meets both L-PTXT
and L-CTXT.
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Theorem 7 (IND-ID-CCA ∧ L-PTXT ∧ L-CTXT�NT sUF-CMA). There ex-
ists IND-ID-CCA secure IBE Π, such that Π is both L-PTXT and L-CTXT, but
NT (Π) is not sUF-CMA secure.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

6. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

7. Canetti, R., Halevi, S., Katz, J.: A Forward Secure Public Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

9. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues.
In: Honary, B. (ed.) IMA 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg
(2001)

10. Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal Security Treat-
ments for IBE-to-Signature Transformation: Relations among Security Notions.
Full version of this paper, available as Eprint Report 2007/030.

11. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

12. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer Secu-
rity 28, 270–299 (1984)

14. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

15. Naor, M., Yung, M.: Public-Key Cryptosystems Provably-Secure against Chosen-
Ciphertext Attacks. In: STOC 1990, pp. 427–437 (1990)



Formal Security Treatments for Signatures from Identity-Based Encryption 227

16. Rackoff, C., Simon, D.: Non-interactive Zero-knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

17. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

18. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)



Decryptable Searchable Encryption

Thomas Fuhr1 and Pascal Paillier2
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Abstract. As such, public-key encryption with keyword search (a.k.a
PEKS or searchable encryption) does not allow the recipient to decrypt
keywords i.e. encryption is not invertible. This paper introduces search-
able encryption schemes which enable decryption. An additional feature
is that the decryption key and the trapdoor derivation key are totally in-
dependent, thereby complying with many contexts of application. We put
forward a seemingly optimal construction for decryptable searchable en-
cryption which makes use of one KEM, one IDKEM and a couple of hash
functions. We define a proper security model for decryptable searchable
encryption and show that basic security requirements on the underlying
KEM and IDKEM are enough for our generic construction to be strongly
secure in the random oracle model.

1 Introduction

Background. Among the most recent developments of public-key cryptography,
the mechanisms for ID-based encryption [19,5,6,13,3] and public-key encryption
with keyword search (PEKS) have become increasingly attractive thanks to their
connections with many other (still unsolved) design issues. It seems that the
idea of encryption with keyword search, also known as searchable encryption [4],
appeared as a natural application of what one could achieve with bilinear maps,
which already provided the basis for ID-based encryption. A more recent work
[1] shows that these mechanisms are intimately related in the sense that they
are induced by a common primitive known as an anonymous IDKEM [8].

Informally, a searchable encryption c of a keyword w can only be tested by the
recipient who uses her private key to detect whether c matches w or not. This
ability is transferrable to anyone under the form of a keyword-specific trapdoor
T(w) which enables the search for encryptions of w. In a typical application of
searchable encryption, the entity holding T(w) receives lots of encrypted key-
words and filters out encryptions of w′ �= w. Searchable encryption, as currently
achieved, does not require ciphertexts to be decryptable.

Our Contributions. This paper introduces searchable encryption schemes that
enable decryption. We mention that the decryption key and the trapdoor deriva-
tion key are independent of each other, thereby complying with various contexts

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 228–236, 2007.
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of application. We put forward a generic construction for decryptable searchable
encryption. To achieve our goal, we make use of generic cryptographic prim-
itives such as key encapsulation mechanisms (a.k.a. KEMs) [10] and identity-
based versions of KEMs (IDKEMs). Our construction also employs a couple of
hash functions. We define a proper security model for decryptable searchable
encryption and investigate under which security requirements on the underlying
KEM and IDKEM blocks our construction yields a maximally secure scheme.
All security proofs considered in this paper stand in the random oracle model.

Applications of Our Work. Decryptable searchable encryption (DSE for short)
extends the notion of PEKS and may therefore be used in every single applica-
tion of PEKS. We may also find applications in the management of encrypted
databases. In particular, since the decryption key and the trapdoor derivation
key are generated independently from one another, data can be decrypted by
an entity and trapdoors be generated by some other party. An illustrative ex-
ample of this feature is as follows. Assume Bob is a telephone operator, Alice a
subscriber, Charlie a state agency and Daniel a police inspector whose role con-
sists in identifying subscribers belonging to the Mafia. Assume that Bob stores
Alice’s telephone statement encrypted with DSE, and that the decryption key
belongs to Alice and the trapdoor derivation key belongs to Charlie. Alice is
the only person who can decrypt it, but Charlie can issue trapdoors for some
phone numbers and give them to Daniel to help him find out whether Alice
is connected to the Mafia, without learning anything about the other numbers
Alice has called. The same scenario is applicable to the secure management of
money transfers, wherein a maximal level of secrecy about account numbers
involved in transactions is guaranteed, while leaving to a designated authority
the ability to trace encrypted transactions made to or from well-identified bank
accounts.

Outline. We start in Section 2 by a number of definitional facts about KEMs and
IDKEMs. Section 3 describes our generic construction and provides a security
analysis. Section 4 provides an example of instantiation based on ElGamal and
BDOP [4]. Section 5 concludes on a number of questions left open by this work.

2 Preliminaries on Encapsulation Mechanisms

2.1 Key Encapsulation Mechanisms (KEMs)

Definition. A KEM is a basic cryptographic primitive by the means of which
one can publicly and securely encapsulate a randomly generated session key. The
owner of the private key (the decapsulation key) can later recover the session key
given the encapsulation. KEMs make use of decapsulation keys, encapsulation
keys, random numbers, ciphertexts and secret values (that may be symmetric
keys). Here we will not describe their inner structure, but rather give a gen-
eral description of the primitive. We identify a KEM to a tuple of probabilistic
algorithms KEM = (KEM.Gen, KEM.Encap, KEM.Decap) defined as follows.
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Key generation. KEM.Gen(1k) takes a security parameter k ∈ N and outputs
a public key pkK ∈ KEM.PK and a decapsulation key skK ∈ KEM.SK.

Encapsulation. KEM.Encap(pkK, r) takes as input a public key pkK and a ran-
dom r ∈ KEM.R and returns an encapsulation c ∈ KEM.C and the encapsu-
lated value s ∈ KEM.S.

Decapsulation. KEM.Decap(skK, c) takes as input a decapsulation key skK and
an encapsulation c and returns the matching decapsulated value s ∈ KEM.S.

It is well-known that the notion of KEM is equivalent to the one of public-key
encryption. There has been a recent interest in lightening the relations between
hybrid encryption and various forms of key encapsulations [2].

Security Notions for KEMs. As for other cryptographic primitives, one may
define several security notions for KEMs. In particular, active attacks are defined
similarly to chosen-ciphertext attacks against public-key encryption schemes. In
this work, we mainly take interest in two security notions for KEMs which we
describe under the form of games. The first security notion captures the property
that the encapsulation function KEM.Encap cannot be inverted under an active
attack:

Game 1 (r-OW-CCA.KEM). A probabilistic algorithm A is given a random key
pair (pkK, skK) ← KEM.Gen(1k) as well as random (c∗, s∗) and attempts to re-
cover r∗ ∈ KEM.R such that KEM.Encap(pkK, r∗) = (c∗, s∗).

Unless otherwise stated, we denote by Succ(A, k) the probability (taken over
the random coins of A and its challenger) under which A wins a given security
game. For any security notion SEC for any cryptographic primitive PRIM defined
by such a game, we define InSec(SEC.PRIM, k) = maxA Succ(A, k) where the
maximum is taken over all polynomial time adversaries A playing the above
game. PRIM is said to be SEC-secure if InSec(SEC.PRIM, k) is a negligible function
of k.

The second security notion also relates to active attacks. It is quite similar to
plaintext-checking attacks against public-key cryptosystems. It states that the
decapsulation procedure is hard to compute without the decapsulation key, even
when one is given an oracle that tells when the wanted decapsulated value is
found.

Game 2 (s-OW-PCA.KEM). A probabilistic algorithm A is given pkK where
(pkK, skK) ← KEM.Gen(1k) as well as a random encapsulation c∗, and attempts
to recover the decapsulated value s∗ matching c∗. During the game, the adver-
sary A is given access to a distinguisher (or distinction oracle) which, given
a pair (c, s), tells whether c encapsulates s. The oracle can be invoked without
restrictions by A.

2.2 Identity-Based Key Encapsulation Mechanisms (IDKEM)

Definition. An IDKEM is an identity-based KEM. Definitionally, IDKEMs can
be defined as searchable KEMs, a primitive providing the trapdoor mechanism
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underlying searchable encryption. Because this aspect of IDKEMs is impor-
tant with regard to this work, we make use of the widest definition. An ID-
KEM is identified to a tuple of probabilistic algorithms IDKEM = (IDKEM.Gen,
IDKEM.Trap, IDKEM.Encap, IDKEM.Decap) defined as follows.

Key generation. IDKEM.Gen(1k) takes a security parameter k and outputs a
public key pkI ∈ IDKEM.PK and a trapdoor derivation key tkI ∈ IDKEM.T K.

Trapdoor derivation. IDKEM.Trap(tkI, w) makes use of the trapdoor deriva-
tion key to compute a decapsulation trapdoor T(w) ∈ IDKEM.T for the
keyword w ∈ {0, 1}w. Trapdoor derivation may be probabilistic.

Encapsulation. IDKEM.Encap(pkI, w, r) takes a public key, a keyword w ∈
{0, 1}w and a random r ∈ IDKEM.R and outputs an encapsulation c ∈
IDKEM.C and the encapsulated value u ∈ IDKEM.U .

Decapsulation. IDKEM.Decap(T(w), c) takes an encapsulation c and a decap-
sulation trapdoor T(w) and returns the decapsulated value u matching w
and c.

Security Notions. As in the case of ID-based encryption schemes, security notions
come in two different flavors for IDKEMs. A first family of adversarial goals
captures different levels of privacy with respect to the decapsulated value (one-
wayness, indistinguishability, etc.). The others are defined in a similar way but
relate to the privacy of the keyword w itself, and resistance to these goals is
identified as a form of anonymity.

Game 3 (s-OW-CCA.IDKEM). The adversary A is given a public key pkI where
(pkI, tkI) ← IDKEM.Gen(1k) and later outputs a keyword w+ ∈ {0, 1}w. The chal-
lenger randomly selects r+ ← IDKEM.R and computes (c+, u+) = IDKEM.Encap
(pkI, w

+, r+). The challenge c+ is sent to A and A attempts to recover u+.
Throughout the game, the adversary is given access to two oracles; a distinc-
tion oracle which tells whether a tuple (w, c, u) is consistent in the sense that
c encapsulates u under keyword w; the adversary has also access to a trap-
door derivation oracle but is not allowed to request a trapdoor corresponding
to w+.

Game 4 (ANON-CCA.IDKEM). The adversary A is given a public key pkI where
(pkI, tkI) ← IDKEM.Gen(1k) and later returns two different keywords w0, w1 ∈
{0, 1}w. The challenger picks a random bit b, randomly selects r ← IDKEM.R
and computes (cb, ub) = IDKEM.Encap(pkI, wb, r). The encapsulation cb is sent
to the adversary. The adversary later outputs a guess b̂ and wins the game if
b̂ = b. During the game, the adversary is allowed to query two oracles: a trapdoor
derivation oracle for w �= w0, w1 and a decapsulation oracle for w ∈ {w0, w1} and
c �= cb which returns the decapsulation u of c. Here Succ(A, k) is defined as the
difference between the probability that A wins the game and 1/2, the probability
for a random response to be true.
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3 Decryptable Searchable Encryption

3.1 Definition and Security Model

We identify a decryptable searchable encryption scheme DSE to a tuple of prob-
abilistic algorithms

DSE = (DSE.Gen, DSE.Enc, DSE.Dec, DSE.Trap, DSE.Test)

enjoying the following properties.

Key generation. DSE.Gen(1k) takes a security parameter k and outputs a pub-
lic key pk, a decryption key dk and a trapdoor derivation key tk.

Encryption. DSE.Enc(pk, w, r) takes as input a public key pk, a message w ∈
{0, 1}w and r ∈ DSE.R and returns a ciphertext c.

Decryption. DSE.Dec(dk, c) takes a decryption key dk and a ciphertext c and
returns the message w ∈ {0, 1}w that c encrypts or ⊥ if c is invalid.

Trapdoor derivation. DSE.Trap(tk, w) requires a trapdoor derivation key tk
and a message w ∈ {0, 1}w to compute a search trapdoor T(w). The trapdoor
T(w) may be probabilistic in which case DSE.Trap also requires randomness.

Test. DSE.Test(pk, T(w), c) takes as input a public key pk, a search trapdoor
T(w) for w, a ciphertext c and returns 1 if c encrypts w. Otherwise 0 is
returned.

We focus on the strongest possible notion of security for decryptable searchable
encryption which we capture by the following game:

Game 5 (IND-CCA.DSE). A set of keys (pk, dk, tk) ← DSE.Gen(1k) is randomly
selected and A is executed over pk. A outputs w0, w1 ∈ {0, 1}w with w0 �= w1.
The challenger randomly picks b ∈ {0, 1} and outputs cb. A then outputs its
guess b̂ ∈ {0, 1} and wins if b̂ = b. Throughout the game, A may send queries
w �∈ {w0, w1} to a trapdoor derivation oracle DSE.Trap(tk, ·) and queries c �= cb

to a decryption oracle DSE.Dec(dk, ·).

3.2 A Generic Construction from KEMs and IDKEMs

We suggest a construction using one KEM, one IDKEM and a couple of hash
functions H1, H2. These ingredients have to be compatible in the sense that H1
must map elements of IDKEM.U to elements of KEM.R, and elements of KEM.S
to elements of {0, 1}w × IDKEM.R. We also require an additional property for
the IDKEM:

Property 1. Given (w0, w1) ∈ {0, 1}w and (c0, c1) ∈ IDKEM.C, it is easy to check
whether for some s ∈ IDKEM.S, the first component c of

(c, u) = IDKEM.Encap(pkI, wi, s)

is equal to ci for i = 0, 1, this holding for any public key pkI.
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This property is achieved for most existing IDKEMs. We denote by � a revert-
ible composition law over IDKEM.R such as a group law or ⊕. We define our
construction DSE as follows.

Key generation. DSE.Gen(1k)runs KEM.Gen(1k) and IDKEM.Gen(1k) and sets
pk = (pkK, pkI), dk = skK and tk = tkI.

Encryption. DSE.Enc(pk, w, r) runs KEM.Encap(pkK, r) resulting in an encap-
sulation c1 and a decapsulated value s. One computes (s1, s2) = H1(s),
c2 = s1 ⊕ w, (c3, u) = IDKEM.Encap(pkI, w, s2) and c4 = r � H2(u). The
ciphertext is (c1, c2, c3, c4).

Decryption. DSE.Dec(dk, (c1, c2, c3, c4)) first decapsulates c1 by running KEM.
Decap(skK, c1) to recover s. One then computes (s1, s2) = H1(s), w = s1⊕c2,
and (c′, u) = IDKEM.Encap(pkI, w, s2). The algorithm checks that c′ = c3,
computes r′ = H2(u)−1 � c4 and finally checks that KEM.Encap(pkK, r′) =
(c1, s) before returning w. In case one of these conditions is not fulfilled, ⊥
is returned.

Trapdoor derivation. DSE.Trap(tk, w) returns IDKEM.Trap(tkI, w).

Test. DSE.Test(pk, T(w), (c1, c2, c3, c4)) computes

u′ = IDKEM.Decap(T(w), c3) , r′ = c4 � H(u′)−1 ,

(c′1, s
′)= KEM.Encap(pkK, r′) and (s1, s2) = H1(s′). One then checks whether

c′1 = c1 and (c3, u) = IDKEM.Encap(pkI, c2 ⊕ s1, s2). DSE.Test returns 1 if
these conditions are fulfilled, 0 otherwise.

Theorem 1. Assuming that KEM is r-OW-CCA and s-OW-PCA-secure and that
IDKEM is s-OW-CCA and ANON-CCA-secure, DSE as per the above construction
is IND-CCA-secure. More precisely,

InSec(IND-CCA.DSE, k) ≤ 2 · InSec(s-OW-PCA.KEM, k)
+ 2 · InSec(s-OW-CCA.IDKEM, k) + InSec(r-OW-CCA.KEM, k)
+ InSec(ANON-CCA.IDKEM, k) + negl (k) .

We give a full proof of Theorem 1 in the full version of this work [12].

4 An Efficient Instantiation of DSE Using Bilinear Maps

We now give a specific scheme using our general construction. To this end, we
will use existing examples of KEMs and IDKEMs.

4.1 Description of Our Scheme

We now consider the decryptable searchable encryption scheme as per our con-
struction of Section 3 using IDKEM = BDOP [4] over a bilinear group system
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S = (G1, g1, G2, g2, Gt, e (·, ·)) and a KEM defined over G1 and relying on El-
Gamal encryption [11]. It is easily seen that BDOP satisfies Property 1. The
revertible operator � is taken as addition modulo q = |G1| = |G2| = |Gt|. The
security parameter k is set to log q. We also employ three hash functions F, G, H
viewed as random oracles which domain and range are implicitly defined by the
following description.

Key generation. DSE.Gen randomly selects x ← Zq and x′ ← Zq and sets the
decryption key to dk = x and the trapdoor derivation key to tk = x′. Noting
y = gx

1 , y′ = gx′

1 , the public key is pk = (y, y′).

Encryption. For w ∈ {0, 1}w and r ∈ Zq, DSE.Enc(pk, w, r) computes c1 = gr
1 ,

(s1, s2) = G(yr), c2 = s1 ⊕ w, c3 = gs2
1 , u = e (y′s2 , F (w)) and c4 = H(u) +

r mod q. The encryption is c = (c1, c2, c3, c4).

Decryption. Given c =(c1, c2, c3, c4), DSE.Dec(x, c) computes s= cx
1 , (s1, s2) =

G(s) and w = c2 ⊕ s1. If c3 �= gs2
1 , DSE.Dec(x, c) returns ⊥. Otherwise,

one computes u = e (y′s2 , F (w)), r = c4 − H(u) mod q and checks whether
c1 = gr

1 . If this condition is satisfied, DSE.Dec(x, c) returns w. Otherwise ⊥
is returned.

Trapdoor derivation. Given w ∈ {0, 1}w and x′,DSE.Trap(x′, w)returns T(w)
= F (w)x′ ∈ G2.

Test. Given c = (c1, c2, c3, c4) and T(w) ∈ G2, DSE.Test(pk, T(w), c) computes
u = e (c3, T(w)) and r = c4−H(u) mod q. If c1 �= gr

1 , 0 is returned. Otherwise
one computes s = yr, (s1, s2) = G(s) and w = c2 ⊕ s1. If c3 �= gs2

1 , 0 is
returned. Otherwise 1 is returned.

4.2 Security Analysis

The Gap-Diffie-Hellman Problem GDH. Let G be a group of prime order q and
let g be a generator of G. The computational problem CDH is defined as the
problem of computing gab given (ga, gb) ∈ G. DDH consists in distinguishing the
two distributions D = (ga, gb, gab) and R = (ga, gb, gt) for randomly selected
a, b, t ← Zq. The gap problem GDH is defined as the problem of solving CDH
given an oracle that solves DDH. These problems are classical in cryptography
and we refer the reader to an extensive literature [9,18,14,7] for applications of
GDH to public-key design. We finally note that GDH ≡ CDH over bilinear map
groups.

The Gap-Bilinear-Diffie-Hellman Problem GBDH. Let S be a bilinear group
system as above. The computational problem CBDH is defined as the prob-
lem of computing e (g1, g2)

abc given ga
1 , gb

1 ∈ G1 and gc
2 ∈ G2. CBDH admits a

decisional version DBDH which consists in distinguishing the two distributions
D = (ga

1 , gb
1, g

c
2, e (g1, g2)

abc) and R = (ga
1 , gb

1, g
c
2, e (g1, g2)

t) for randomly selected
a, b, c, t ← Zq. It is easily shown that DBDH ⇐ CBDH, which allows one to define
the gap problem GBDH as the problem of solving CBDH given an oracle that
solves DBDH.
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We now claim the following facts: a) ElGamal (defined over the group G1)
is s-OW-PCA-secure under the assumption that GDH is intractable over G1; b)
it is also r-OW-CCA-secure under the discrete log assumption over G1; c) one
has InSec(ANON-CCA.BDOP, k) = 0 for any k ∈ N; d) BDOP is s-OW-CCA-secure
under the assumption that GBDH is intractable over S in the random oracle
model; e) the GBDH problem over S is reducible to the GDH problem over G1;
f) DSE[ElGamal, BDOP] is IND-CCA-secure under the GBDH assumption over S
and the GDH assumption over G1 in the random oracle model.

As a direct application of the above, we state:

Theorem 2. DSE[ElGamal, BDOP] is IND-CCA-secure under the GDH assump-
tion over G1 in the random oracle model.

We refer to the full version of this work [12] for more details and proper proofs
of these statements.

5 Conclusion and Open Issues

We introduced the concept of decryptable searchable encryption and showed how
to generically implement this new primitive using one KEM, one IDKEM and
hash functions. We provided a precise security proof in which we relate IND-CCA-
security to the security properties of the inner primitives. Decryptable searchable
encryption finds applications in the secure management of encrypted databases,
among others. We mention that ID-based decryptable searchable encryption is
obtained as a side effect of our generic construct. This is done by replacing
the underlying KEM by a second IDKEM which keyword input is fed with ID
strings. The trapdoor derivation key of this IDKEM is then the master secret
key of the whole ID-based encryption scheme.

We see several open research topics associated to our work. First, one may ask
whether more efficient constructions exist that achieve general-purpose DSE. Op-
timizing the ciphertext size is a pending issue in this respect. Second, we would
consider as a major breakthrough to come up with a DSE which security does not
rely on random oracles. Although seemingly hard to find, such a scheme would
benefit from a security standing in the standard model and would consequently
avoid the threat of recent separation results [15,16,17].
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